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Abstract: Landslide susceptibility assessment is an 
essential tool for disaster prevention and management. 
In areas with multiple fault zones, the impact of fault 
zone on slope stability cannot be disregarded. This 
study performed qualitative analysis of fault zones and 
proposed a zoning method to assess the landslide 
susceptibility in Chengkou County, Chongqing 
Municipality, China. The region within a distance of 1 
km from the faults was designated as sub-zone A, while 
the remaining area was labeled as sub-zone B. To 
accomplish the assessment, a dataset comprising 388 
historical landslides and 388 non-landslide points was 
used to train the random forest model. 10-fold cross-

validation was utilized to select the training and testing 
datasets for the model. The results of the models were 
analyzed and discussed, with a focus on model 
performance and prediction uncertainty. By 
implementing the proposed division strategy based on 
fault zone, the accuracy, precision, recall, F-score, and 
AUC of both two sub-zones surpassed those of the 
whole region. In comparison to the results obtained for 
the whole region, sub-zone B exhibited an increase in 
AUC by 6.15%, while sub-zone A demonstrated a 
corresponding increase of 1.66%. Moreover, the results 
of 100 random realizations indicated that the division 
strategy has little effect on the prediction uncertainty. 
This study introduces a novel approach to enhance the 
prediction accuracy of the landslide susceptibility 
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mapping model in areas with multiple fault zones. 
 
Keywords: Landslide susceptibility mapping; Fault 
division strategy; Random forest; GIS 

1    Introduction  

Landslides, being the most frequently occurring 
geological disasters, pose a significant threat to the 
safety of both human lives and property (Lima et al. 
2022; Wang et al. 2023b). The Three Gorges Reservoir 
area in China emerges as one of the regions 
significantly impacted by landslide disasters, thereby 
posing considerable challenges for the management of 
geological disaster risk (Tang et al. 2019; Liu et al. 
2023b; Wang et al. 2023a; Zhou et al. 2023). With the 
aim of mitigating these risks and selecting suitable 
sites for future development, landslide susceptibility 
mapping (LSM) has emerged as a crucial tool. The LSM 
study operates under the common assumption that the 
factors conducive to future landslides closely coincide 
with those that precipitated historical landslide 
occurrences. Based on the distribution of historical 
landslides and associated conditioning factors, such 
assessments aid in determining the spatial probability 
of disaster occurrence, thereby holding immense 
significance for disaster prevention and land use 
planning (Zhang et al. 2022b).  

Currently, regional LSM studies can be 
categorized into three distinct types: knowledge-based, 
data-driven, and physics-informed methods. Each of 
these methods possesses specific merits and 
limitations (Achu et al. 2023). The knowledge-based 
method features a straightforward process, though it is 
susceptible to significant subjectivity. The physics-
informed method can directly simulate the force 
interactions, yet it is constrained by oversimplified 
mechanics laws (Wei et al. 2023). Over the past two 
decades, the integration and application of Geographic 
Information System (GIS) have garnered considerable 
attention, capitalizing on the rapid advancements in 
geospatial software, remote sensing, and global 
positioning system technology (Demir 2019). Due to 
the superiority of machine learning (ML) models in 
addressing intricate and nonlinear problems, the data-
driven method combining GIS has gained popularity in 
LSM studies (Huang et al. 2020; Kainthura and 
Sharma 2022; Li et al. 2022).  

Among the data-driven methods commonly 
employed in LSM studies, notable examples include 

random forest (RF), extreme gradient boosting 
(XGBoost), logistic regression (LR), support vector 
machine (SVM), and artificial neural network (ANN) 
(Aditian et al. 2018; Wang et al. 2023c; Yang et al. 
2023). In order to improve the predictive accuracy of 
the ML model, scholars have employed various 
methods. Liu et al. (2023a) proposed a novel strategy 
for selecting negative samples, which enhances the 
performance of model while also increasing the 
interpretability. Hu et al. (2020) compared the impact 
of three non-landslide sample extracting methods on 
model performance and pointed out the advantage of 
fractal theory model. Kavzoglu and Teke (2022) 
employed optimization algorithms to adjust the hyper-
parameter settings of XGBoost, resulting in improved 
accuracy. Lin et al. (2023) applied the convolutional 
neural networks based on Bayesian optimization to 
conduct LSM and obtained excellent performance. 
Zhang et al. (2022a) combined qualitative and 
quantitative analysis to assess the landslide 
susceptibility of Yunyang County, Chongqing City, 
China, thereby improving the mapping accuracy and 
demonstrating the feasibility of the division strategy 
based on qualitative analysis. Additionally, numerous 
studies have focus on the prediction uncertainty of 
LSM (Achu et al. 2023; Wei et al. 2023). Nevertheless, 
in regions with scarce historical landslide data, the 
performance of data-driven models often proves 
unsatisfactory. To address this issue, Wang et al. (2022) 
employed a transfer learning method to transfer the 
knowledge from regions characterized sufficient 
landslide records to those with limited data. Fu et al. 
(2023) applied TrAdaBoost transfer learning 
algorithm to effectively leverage landslide data outside 
the target area. Al-Najjar and Pradhan (2021) used 
Generative Adversarial Networks to enrich inventory 
data, resulting in an enhancement of prediction 
performance. 

Against the backdrop of intricate geological 
conditions, the formation mechanism of geological 
disasters becomes highly complex. In addition to 
variables such as rainfall and engineering activities, the 
presence of active fractures emerges as a pivotal 
influencing factor. The rock mass within the fault zone 
experiences significant fragmentation, leading to a 
higher concentration of landslides in the vicinity of 
these zones. Previous studies have extensively 
investigated landslides along fault zones. For instance, 
Chen et al. (2022) used a hybrid ML model to conduct 
LSM along the Anninghe fault zone in China. Demir  
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(2019) applied a GIS-based approach to evaluate the 
landslide susceptibility in a part of the North Anatolian 
fault zone, indicating the significant influence of 
distance from faults on landslide occurrence. Zhang et 
al. (2023) employed the XGBoost model to assess the 
landslide susceptibility in Fengjie County, Chongqing 
City, China, emphasizing the distance from faults as 
the second most influential conditioning factor. Zhou 
et al. (2021b) utilized a hybrid RF model to assess 
landslide susceptibility in Wuxi County, Chongqing 
City, China, identifying the distance from faults as the 
primary contributing factor to landslides.  

Based on the aforementioned analysis, it becomes 
evident that the influence of fault zones on slope 
cannot be disregarded. However, few studies have 
been undertaken to enhance the predictive accuracy of 
ML models based on qualitative analysis of fault zones. 
In this study, a division strategy based on fault zones is 
employed to partition the Chengkou County, 
Chongqing City, China into two sub-zones. The region 
within a 1 km distance from faults is designated as sub-
zone A, while the remaining area is defined as sub-zone 
B. RF model serves as the classifier for assessing the 
landslide susceptibility of the study area. Five 
performance indicators are selected to evaluate the 

performance of ML model. The results of 100 random 
realizations of RF model are used to measure the 
prediction uncertainty. The impact of the division 
strategy based on fault zones on both model 
performance and prediction uncertainty is investigated. 

2    Materials 

2.1 Description of the study area 

Chongqing is located in the upper reaches of the 
Yangtze River, in the transitional zone between the 
Qinghai-Tibet Plateau and the middle-to-lower 
reaches of the Yangtze River Plain. As shown in Fig. 1, 
the study area, Chengkou County (31°37'N - 32°12'N, 
108°15'E - 109°16'E), is located in the northeast of 
Chongqing. This area spans 96 km in an east-to-west 
direction and 66 km in a north-to-south direction, 
encompassing a total area of 3289.08 km2. Chengkou 
County falls under a subtropical humid monsoon 
climate. The study area is characterized by its typical 
mountainous terrain, comprising prominent 
landforms such as ridges, valleys, and slopes, with 
elevation ranging from 483 m to 2687 m. 

 
Fig. 1 Study area. (a) Location of the study area; (b) Landslide inventory map; (c) A landslide event (2019.08.14); (d) 
Remote sensing image of Chengba fault zone. 
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The rocks in the study area are formed in the 
Mesozoic Triassic, Paleozoic Permian, Silurian, 
Ordovician, and Cambrian, and the lithological 
categories mainly include gabbro and amphibolite. The 
faults in Chengkou County are highly developed, 
coupled with complex lithology, rendering the area 
particularly susceptibility to geological disasters. Fig. 
1d depicts the remote sensing image of Chengba fault 
zone. The section of the Chengba fault in Chongqing is 
wave-shaped, north-dipping, with a dip angle of 40° - 
80°. This fault exhibits significant scale and has a long 
history of activity, exerting control over the 
sedimentation processes on both sides. The terrain 
types on either side of the fault exhibit apparent 
differences. The southwestern side features rugged 
topography, with mountain ridges perpendicular to the 
Chengba fault, while the northeastern side boasts 
relatively intact terrain, with ridges predominantly 
parallel to the fault. Owing to the combined effects of 
multiple factors, landslide disasters along the Chengba 
fault zone occur frequently, resulting in substantial 
impacts on local residents. 

2.2 Landslide inventory 

Cataloguing landslides is a crucial step in LSM, 
and the completeness and quality of landslide data 
directly impact the ultimate predictive accuracy 
(Zhang et al. 2023). In this study, the landslide 
inventory is sourced from the Chongqing Geological 
Monitoring Station, incorporating information 
obtained from field surveys and historical hazard 
reports conducted by front-line surveyors. The 
landslide inventory datasheet encompasses various 
essential details, including the occurrence time, 
location, geometric characteristics of slope body, main 
triggering factor, landslide type, elevation information, 
area, volume, and hazard grade. A total of 401 
landslides were recorded in Chengkou County between 
1970 and 2020. The distribution pattern of these 
landslides is depicted in Fig. 1b.  

Based on the landslide inventory, a statistical 
analysis is presented in Fig. 2. Fig. 2 indicates that the 
year with the highest number of landslide disasters is 
2010, witnessing a total of 187 landslides. In terms of 
months, July stands out as having the highest 
incidence of landslides (75.56%), followed by June  
(9.98%), with the remaining months collectively 
contributing 14.46%. This pattern can be attributed to 
the significant correlation with precipitation. From the 

perspective of area, 37.4% of historical landslides have 
an area between 104 and 105 m2, 1.5% greater than 105 
m2 and 61.1% smaller than 104 m2. Furthermore, 76 
landslides exhibit a volume exceeding 105 m3, 
according for 18.95% of total inventory, 60.85% of total 
inventory between 104 and 105 m3 and 20.2% smaller 
than 104 m3. Notably, a severe landslide incident 
occurred in Longtian Township, Chengkou County, on 
August 14, 2019, as depicted in Fig. 1c. This disaster 
resulted in the destruction of three buildings and 
tragically claimed the lives of seven individuals.  

2.3 Data collection and preparation 

Landslide susceptibility assessment is a typical 
binary classification problem. In this study, the ratio of 
the positive/negative samples is 1:1. The positive 
samples are 401 landslide cases. The negative samples 
are extracted based on 500m buffer zone strategy, 
which represents selecting non-landslide points 500m 
away from landslide points (Wang et al. 2023c; Zhang 
et al. 2023). The occurrence of landslide is attributed 
to a combination of factors, including rainfall, human 
activities, and various other elements. There exists no 
standardized guideline for selecting conditioning 
factors. Taking all influencing factors into account 
proves to be a time-consuming and inefficient process. 
Therefore, a total of 18 conditioning factors from four 
different aspects are selected as inputs for the ML 
model, as outlined in Table 1 and depicted in Fig. 3  
(Zhou et al. 2021b). The sources and types of GIS data 
used in this study are presented in Table 2. 

A 30m grid resolution is employed for LSM in this 
study. The grid covering Chengkou County comprises 
a total of 3659408 cells. Apart from elevation, the 

 
Fig. 2 Cumulative frequency and number of historical 
landslides. 
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remaining eight topographic factors are derived from 
DEM data through appropriate processing techniques. 
The values of relief degree of land surface (RDLS), 
slope, aspect, curvature, plane curvature, and profile 
curvature can be calculated by the built-in function of 
GIS software. The distances from faults, rivers, and 
roads are determined through nearest analysis module 
within the software. Topographic wetness index (TWI) 
and stream power index (SPI) can be obtained using 
Eq. (1) and Eq. (2), respectively. 

 TWI = ln 𝐴 tan𝛽⁄  (1) 

 SPI = 𝐴 × tan𝛽    (2) 

where 𝐴  represents the slope contributing area, and 𝛽 
is the slope inclination.  

3    Methodology 

The purpose of this study is to investigate how the

Table 1 Classification of conditioning factors 

Factor 
category 

Conditioning factor Type Classification standard 

Topographic 
factors Elevation (m) 9 1. < 500; 2. 500-750; 3. 750-1000; 4. 1000-1250; 5. 1250-1500; 

6. 1500-1750; 7. 1750-2000; 8. 2000-2250; 9. > 2250 
Relief degree of land 
surface (RDLS) (m) 

8 1. < 20; 2. 20-30; 3. 30-40; 4. 40-50; 5. 50-60; 6. 60-70; 7. 70-
80; 8. > 80 

Slope (°) 7 1. < 5; 2. 5-15; 3. 15-25; 4. 25-35; 5. 35-45; 6. 45-55; 7> 55 

Aspect 9 1. Flat; 2. North; 3. Northeast; 4. East; 5. Southeast; 6. South; 7. 
Southwest; 8. West; 9. Northwest 

Curvature 6 1. < -1; 2. -1 to -0.5; 3. -0.5 to 0; 4. 0-0.5; 5. 0.5-1; 6. > 1 
Plan Curvature 6 1. < -1; 2. -1 to -0.5; 3. -0.5 to 0; 4. 0-0.5; 5. 0.5-1; 6. > 1 
Profile Curvature 6 1. < -1; 2. -1 to -0.5; 3. -0.5 to 0; 4. 0-0.5; 5. 0.5-1; 6. > 1 
Topographic wetness 
index (TWI) 

5 1. < 4; 2. 4-6; 3. 6-8; 4. 8-10; 5. > 10 

Stream power index (SPI) 7 1. < 15; 2. 15-30; 3. 30-45; 4. 45-60; 5. 60-100; 6. 100-1000; 
7. > 1000 

Geological 
factors 

Soil thickness (m) 4 1. < 75; 2. 75-95; 3. 95-115; 4. 115-125 

Distance from faults (m) 7 1. < 500; 2. 500-1000; 3. 1000-1500; 4. 1500-2000; 5. 2000-
2500; 6. 2500-3000; 7. > 3000 

Environmental 
factors 

Normalized vegetation 
index (NDVI) 

6 1. 0-0.5; 2. 0.5-0.6; 3. 0.6-0.7; 4. 0.7-0.8; 5. 0.8-0.9; 6. 0.9-1.0 

Distance from rivers (m) 7 1. < 200; 2. 200-400; 3. 400-600; 4. 600-800; 5. 800-1000; 6. 
1000-1200; 7. > 1200 

Aridity 6 1. < 700; 2. 700-800; 3. 800-900; 4. 900-1000; 5. 1000-1100; 
6. > 1100 

Index of moisture (IM) 4 1. < 4500; 2. 4500-5500; 3. 5500-6500; 4. > 6500 
Human 
engineering 
activities 

Distance from roads (m) 7 1. < 200; 2. 200-400; 3. 400-600; 4. 600-800; 5. 800-1000; 6. 
1000-1200; 7. > 1200 

GDP / / 
Human activity index 
(HAI) 

3 1. 0-0.25; 2. 0.25-0.5; 3. 0.5-1 

 
Table 2 Data and data sources 

Data name Data sources Type 
Historical landslides Chongqing Geological Monitoring Station Datasheet 
Elevation Resource and Environment Science and Data Center Grid 
Soil thickness Resource and Environment Science and Data Center Grid 
Faults Resource and Environment Science and Data Center Vector 
Normalized vegetation index Resource and Environment Science and Data Center Grid 
River network Resource and Environment Science and Data Center Vector 
Aridity Resource and Environment Science and Data Center Grid 
Index of moisture Resource and Environment Science and Data Center Grid 
Road network Resource and Environment Science and Data Center Vector 
GDP Resource and Environment Science and Data Center Grid 
Human activity index Nation Earth System Science Data Center Grid 
Other topographic factor GIS processing of Elevation Grid 
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Fig. 3 Conditioning factors selected as inputs for the ML model: (a) Elevation; (b) Relief degree of land surface; (c) 
Slope; (d) Aspect; (e) Curvature; (f) Plan curvature; (g) Profile curvature; (h) Topographic wetness index; (i) Stream 
power index; (j) Soil thickness; (k) Distance from faults; (l) Normalized vegetation index; (m) Distance from rivers; (n) 
Aridity; (o) Index of moisture; (p) Distance from roads; (q) GDP; (r) Human activity index. 
(-To be continued-) 
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 division strategy based on fault zone affects both 
model performance and prediction uncertainty. Fig. 4 
depicts the flowchart of the proposed LSM method 
based on division strategy. It consists of five sequential 
steps, namely data collection and preparation, GIS 
processing, data-driven module considering division 
strategy, mapping, and model evaluation. In the data-
driven module, we use Sklearn-ensemble-Random 
Forest Classifier in Python to establish an RF model. 
The model is trained using 388 landslide records from 
1970 to 2018, along with an equal number of non-
landslide samples. The remaining 13 landslide cases 
from 2019 to 2020 are employed to validate the 
generated landslide susceptibility maps. 

3.1 Random forest 

RF is a bagging ensemble algorithm proposed by 
Breiman (2001) based on classification and regression 
tree. The flowchart of the RF algorithm is illustrated in 
Fig. 5. RF model operates by constructing a multitude 
of decision trees during training. Each tree is built on a 

random subset of the training data, and at each split, 
only a random subset of features is considered. In RF 
model, the ultimate prediction for classification tasks 
is established using a voting mechanism. Each tree 
casts a vote for a particular class, and the predicted 
class is the one that receives the most votes. The voting 
mechanism can be expressed through the following 
formula: 

 𝑌 = argmax 𝐼 𝑌 = 𝑐  (3) 

where 𝑌 represents final predicted class, 𝑁 is the total 
number of decision trees in the RF model, 𝑐 represents 
a particular class, 𝐼 𝑌 = 𝑐   is the indicator function, 
yielding 1 if 𝑌 = 𝑐 and 0 otherwise. 

For the base evaluator, the important role of the 
decision tree is to classify specific features from the 
input data with labels and features classification and 
present the decision rules in a tree diagram (Zhang et 
al. 2023). During the growth of the decision tree, the 
Gini coefficient plays a crucial role as a measure of 
impurity for the classification trees within the 
ensemble. The Gini impurity is a metric that quantifies 

(-Continued-) 

Fig. 3 Conditioning factors selected as inputs for the ML model: (a) Elevation; (b) Relief degree of land surface; (c) 
Slope; (d) Aspect; (e) Curvature; (f) Plan curvature; (g) Profile curvature; (h) Topographic wetness index; (i) Stream 
power index; (j) Soil thickness; (k) Distance from faults; (l) Normalized vegetation index; (m) Distance from rivers; (n) 
Aridity; (o) Index of moisture; (p) Distance from roads; (q) GDP; (r) Human activity index. 
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the likelihood of misclassifying a randomly chosen 
element in the dataset. It is minimized by selecting 
feature and threshold combinations that result in more 
homogeneous child nodes. Specifically, the Gini 
coefficient is defined as follows: 

 Gini 𝑡 = 1 − 𝑝 𝑖|𝑡  (4) 

where 𝐶 represents the number of classes, 𝑝 𝑖|𝑡  is the 
proportion of samples belonging to class 𝑖 in node 𝑡. 

The max_depth and n_estimators, closely 
associated with the Gini coefficient, are the hyper-
parameters that need to be focused on in the RF model 
(Liu et al. 2023a). The max_depth is mainly used to 

control the number of layers in the tree. A 
smaller max_depth may result in shallow 
trees that might not capture complex 
relationships in the data, while a larger 
max_depth can lead to overfitting. The 
number of decision trees is represented by 
n_estimators, which needs to be balanced 
between model effectiveness and training 
difficulty. Properly tuning n_estimators 
can improve predictive performance, 
especially when dealing with complex 
datasets. In addition, random_state 
mainly ensures that the same forest is 
grown for each training, thereby ensuring 
the randomness of training. 

3.2 K-fold cross-validation 

Ideally, when sufficient data is 
available, it is recommended to randomly 
split the dataset into three components: a 
training set, a validation set, and a testing 
set. The training set enables the model to 
learn from labeled samples, the validation 
set is crucial for fine-tuning a ML model, 
and the testing set is used to assess the 
model’s overall performance on new, 
unseen data. Obviously, the dataset for this 
study is not adequate. Only 388 positive 
samples and 388 negative samples are used 
to construct the model. K-fold cross-
validation (CV) is a technique used in ML 
to assess the performance of the model, 
especially when the available dataset is 
limited. Instead of using a single split 
between training and testing sets, k-fold CV 
randomly divides the dataset D into k 

equally sized and mutually exclusive subsets:  

 
D = D ∪ D ∪ … ∪ D  , D ∩ D= ∅ (𝑖 ≠ 𝑗) (5) 

In each iteration, k-1 subsets are randomly 
selected as the training set, and the remaining one 
subset is used as the testing set. This process results in 
k distinct training/testing sets, enabling k rounds of 
training and testing. While there is no strict rule for 
determining the value of k, common choices in applied 
ML include k=5 or 10. Referring to the previous studies 
(Sun et al. 2020; Sun et al. 2023), the value of k is set 
to 10 in this study. The schematic diagram of 10-fold 
CV is depicted in Fig. 6.  

 
Fig. 4 Flowchart of the methodology. 

 

 
Fig. 5 Schematic diagram of random forest model. 
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 3.3 Division strategy based on fault zone 

In the case of Chengkou County, which features 
multiple fault zones, this study utilizes a division 
strategy based on fault zone, coupled with the RF model, 
to establish a comprehensive framework for regional 
LSM. As illustrated in Fig. 7, the study area is partitioned 
into two sub-zones based on the situation of fault zones 
(Huang et al. 2023). The region within a distance of 1 km 
from the faults is designated as sub-zone A, while the 
remaining area is labeled as sub-zone B. For both sub-
zone A and sub-zone B, buffer zones of 500 m are 
established around historical landslide points. Negative 
sample points are randomly selected outside these 
buffer zones. After partitioning, the distribution of 
samples in different regions is detailed in Table 3. 

3.4 Frequency ratio 

Frequency ratio (FR) is utilized in this study to 
illustrate the contribution of conditioning factors to 
landslide occurrence. In the assessment of landslide 
susceptibility, it is assumed that future landslides will 
occur under similar conditions as historical landslides 
(Lee and Pradhan 2007; Chen and Chen 2021). When 
the FR exceeds 1, it signifies that the particular class of 
the conditioning factor is conducive to landslide 
occurrence. The FR can be determined using Eq. (6) 
(Zhang et al. 2019). 

 FR =  𝐿 𝐿⁄𝐴 𝐴⁄  (6) 

where 𝐿   represents the number of landslide cases in a 
specific domain for each class, while 𝐿 denotes the total 
number of landslides in the study area. Similarly, 𝐴  
represents the number of pixels in the same domain for 
each class, while 𝐴 stands for the total number of pixels. 

3.5 Model performance 

The confusion matrix (Fig. 8) is a visual tool 
commonly utilized in supervised learning to analyze 
the prediction accuracy of binary classification 

 
Fig. 7 Division strategy based on fault zone. 

 
Fig. 6 Schematic diagram of 10-fold cross-validation. 

 
Table 3 Distribution of sample points in different regions 

Region Landslide points Non-landslide points Fishnet cells 
Whole region 388 388 3659408 
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Sub-Zone B 259 259 2794410 
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problems. The receiver operating characteristic curve 
(ROC) is a composite indicator that reflects a 
continuous variable of sensitivity and specificity. AUC 
is defined as the area under the ROC curve. The ROC 
curve may not always provide a straightforward 
distinction between classifie to determine superiority. 
In such cases, the AUC serves as a valuable quantitative 
metric for comparing classifier performance. Accuracy 
(ACC), Precision (PRE), Recall (SST), F-score (FS), 
and AUC are selected as performance indicators to 
evaluate the ML model (Hong et al. 2019; Chen et al. 
2021). The value of ACC, PRE, SST, and FS can be 
calculated using Eqs. (7-10). 

 ACC =  TP TNTP TN FP FN (7) 

 PRE = 
TPTP FP (8) 

 SST = 
TPTP FN (9) 

 FS = 
2PRE × SSTPRE SST  (10) 

where TP  represents that the actual label and the 

predicted label are both positive, TN indicates that two 
labels are both negative, FP means that the actual label 
is negative while the predicted label is positive, and FN 
denotes that the actual label is positive while the 
predicted label is negative (Wang et al. 2021). 

4    Results and Analyses 

4.1 Landslide susceptibility mapping 

Prior to conduct LSM, the susceptibility values are 
classified into five levels using Jenks natural fracture 
method: very high, high, moderate, low, and very low 
(Wang et al. 2020). The mapping results and landslide 
kernel density analysis are presented in Fig. 9. A 
comparison of Figs. 9a and Figs. 9b shows that Fig. 9a 
overestimates the landslide susceptibility of the study 
area. Fig. 9a illustrates that the very high susceptibility 
areas in Chengkou County are mainly concentrated in 
the northwestern region. Fig. 9b shows that the very 
high and high susceptibility areas are mainly 
concentrated along the fault zone. The map displayed 
in Fig. 9b generally aligns with the patterns observed 
in Fig. 9c. 

The landslide susceptibility thresholds and 
quantitative analysis results of different regions are 
summarized in Table 4. It is evident that the value of 
landslide ratio/area ratio exhibit a positive correlation 
with the landslide susceptibility level, consistent with 
the findings of Liu et al. (2023a). As the susceptibility 
level improves, the number of landslides occurring 
under a unit area increases. Compared with the 
statistical results of the whole region, after applying 
division strategy based on fault zone, the area ratio of 
very low and low susceptibility areas increase, while 
the area ratio of very high and high susceptibility areas 

 
Fig. 9 Landslide susceptibility maps: (a) Whole region; (b) Division strategy; (c) Historical landslides density map. 

 
Fig. 8 Confusion matrix used to analyze the prediction 
accuracy of binary classification problems. 
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decrease. Table 4 demonstrates that 86.59% historical 
landslides are distributed in very high or high 
susceptibility area after employing division strategy. 
Additionally, the validation of the generated 
susceptibility map with historical landslides (2019-
2020) reveals that 4 out of 13 landslides are distributed 
in the very high susceptibility area, and 2 in high 
susceptibility area. These highlight the reliability of the 
division strategy. Moreover, after applying division 
strategy, the value of landslide ratio/ area ratio of high 
and very high susceptibility areas improve significantly. 
This means that using smaller high-risk areas can 
cover more historical landslides.  

4.2 Model performance and prediction 
uncertainty 

In order to compare the model performance and 
prediction uncertainty, we analyze the result of the RF 
model through 100 random realizations (Achu et al. 
2023; Wei et al. 2023). Each realization obtains an 
individual trained model. The AUC values 
of 100 random realizations for different 
regions are presented in Fig. 10. The 
trained model with highest AUC value is 
executed to generate landslide 
susceptibility map. The standard 
deviation and range of AUC values 
represent the prediction uncertainty. As 
depicted in Fig. 10, after applying division 
strategy, there is a tendency for AUC 
values to increase, especially for sub-zone 
B. The result shows that AUC values of 
whole region range from 0.728 to 0.781, 
the corresponding standard deviation is 
0.011. The statistics of sub-zone A show a 
slightly larger standard deviation and a 
wider AUC bound, spanning from 0.738 

to 0.794. The model in sub-zone B exhibits superior 
result, indicated by a narrower bound ranging from 
0.787 to 0.829 and a smaller standard deviation of 
0.008. In terms of the value of the standard deviation, 
the division strategy has little effect on the prediction 
uncertainty. 

The ROC curves from 10-fold CV across different 
regions are depicted in Fig. 11. Comparing with the 
AUC results for the whole region (0.781), the mean 
AUC of sub-zone B experiences an increase of 6.15%, 
while sub-zone A demonstrates a corresponding 
increase of 1.66%. According to the confusion matrices 
illustrated in Fig. 12, the values of the four evaluation 
indicators (ACC, PRE, SST, and FS) can be determined 
using Eqs. (7-10). The results of the indicators for the 
three models are summarized in Table 5. The analysis 
reveals that all four evaluation criterion values are 
significantly enhanced by applying division strategy 
based on fault zone for LSM. Comparing to the results 
of the whole region, sub-zone A exhibits a 6.44% 
increase in ACC, and the F-score experiences a notable 

 
Fig. 10 Receiver operating characteristic curve-area under the ROC 
curve of 100 random realizations. 
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Table 4 Characteristics of five susceptibility levels in different maps 

Region Landslide 
susceptibility level 

Landslide susceptibility 
threshold 

Landslide ratio 
(%) 

Area  
ratio (%) 

Landslide ratio 
/area ratio 

Whole region 

Very low 0 - 0.098 0 6.76 0 
Low 0.098 - 0.298 1.29 25.46 0.051 
Moderate 0.298 - 0.498 5.41 25.41 0.213 
High 0.498 - 0.698 15.46 20.50 0.754 
Very high 0.698 - 1 77.84 21.87 3.559 

Division 
strategy 

Very low 0 - 0.188 0.52 24.86 0.021 
Low 0.188 - 0.380 2.84 25.59 0.111 
Moderate 0.380 - 0.561 10.05 22.49 0.447 
High 0.561 - 0.745 22.16 15.87 1.396 
Very high 0.745 - 1 64.43 11.19 5.758 
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improvement of 9.39%. The ACC of sub-zone B 
increases by 4.34%, and the F-score increases by 5.97% 
compared to the whole region.  

4.3 Importance analysis of conditioning 
factors 

Analyzing the importance of conditioning factors 
can offer valuable insights for disaster prevention and 
hazard management. The analysis is conducted 
through the feature-importance module of the RF 
model. The importance ranking of 18 factors in 
different regions are illustrated in Fig. 13. For the 
whole region, the top five most significant factors are 
aridity, elevation, distance from roads, IM, and 
distance from rivers. In terms of sub-zone A, distance 
from roads remains a dominant factor, followed by 
aridity, elevation, distance from rivers, and slope. 

Within sub-zone B, the five most crucial factors are 
aridity, elevation, IM, aspect, and distance from roads. 
It is noteworthy that the importance of distance from 
faults increases in two sub-zones. This may be related 
to the division strategy adopted. In addition, all three 
regions exhibit the same characteristics, with elevation 
ranking highest among topographic factors, distance 
from faults ranking as the foremost geological factor, 
aridity prevailing as the paramount environmental 
factor, and distance from roads ranking highest among 
human engineering activity factors. 

5    Discussion 

5.1 Correlation analysis between the 
distribution of landslides and conditioning 
factors 

The analysis of FR values aids in identifying the 
spatial relationship between conditioning factors and 
landslides (Chen and Chen 2021). The conditioning 
factors that exhibit high significance are thoroughly 
examined, including aridity, elevation, distance from 
roads, aspect, IM, slope, distance from rivers, distance  

Table 5 Results of evaluation criterion 

Model Evaluation criterion Mean 
AUC ACC PRE SST F-score 

Whole 
region 0.714 0.722 0.684 0.703 0.781 

Sub-Zone A 0.760 0.769 0.769 0.769 0.794 
Sub-Zone B 0.745 0.731 0.760 0.745 0.829 

 
Fig. 11 Receiver operating characteristic curve-area under the ROC curve of different regions. 

 

 
Fig. 12 Confusion matrices of different regions. 
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from faults. The results are summarized in Table 6. 
Among the six classes of aridity, it is observed that 
72.32% of the landslides occurred in the first category. 
One reason for the influence of elevation on the 
distribution of landslides is the presence of different 
vegetation types and vegetation coverage within 
varying elevation ranges. Elevation also exhibits a 
strong correlation with precipitation. Changes in 
groundwater levels, resulting from rainfall, can impact 
slope stability. In the study area, landslides are 
predominantly concentrated within the elevation 
range of 500-2000 m. It is important to note that the 
impact of human engineering activities on landslides 

Table 6 Analysis of the relationship between 
conditioning factors and landslides 

Factors Class No. of 
landslide 

Landslide 
ratio (%) 

No. of 
pixels in 
domain 

Area   
ratio 
(%) 

FR 

Aridity 

< 700 290 72.32 1237612 33.82 2.14 
700-800 69 17.21 1153445 31.52 0.55 
800-900 42 10.47 1225536 33.49 0.31 
900-1000 0 0 8051 0.22 0 
1000-1100 0 0 5855 0.16 0 
> 1100 0 0 28909 0.79 0 

Ele. 
(m) 

< 500 0 0 82 ≈ 0 0 
500-750 17 4.24 71823 1.96 2.16 
750-1000 76 18.95 342693 9.36 2.02 
1000-1250 120 29.93 584531 15.97 1.87 
1250-1500 100 24.94 716316 19.57 1.27 
1500-1750 50 12.47 724001 19.78 0.63 
1750-2000 26 6.48 612746 16.74 0.39 
2000-2250 11 2.74 404025 11.04 0.25 
> 2250 1 0.25 203191 5.55 0.04 

Dis. 
from 
roads 
(m) 

< 200 27 6.73 177782 4.86 1.39 
200-400 20 4.99 165512 4.52 1.10 
400-600 32 7.98 159548 4.36 1.83 
600-800 32 7.98 154870 4.23 1.89 
800-1000 39 9.73 150732 4.12 2.36 
1000-1200 35 8.73 146315 4.00 2.18 
> 1200 216 53.86 2704649 73.91 0.73 

Aspect 

Flat 26 6.48 423670 11.58 0.56 
North 38 9.48 447077 12.22 0.77 
Northeast 44 10.97 356180 9.73 1.12 
East 54 13.47 353285 9.65 1.40 
Southeast 63 15.71 423299 11.57 1.35 
South 77 19.20 498667 13.63 1.41 
Southwest 42 10.47 413793 11.31 0.92 
West 35 8.73 346938 9.48 0.93 
Northwest 22 5.49 396499 10.83 0.50 

IM 

< 4500 3 0.75 263172 7.19 0.10 
4500-5500 68 16.96 1102158 30.12 0.56 
5500-6500 287 71.57 1963097 53.65 1.33 
> 6500 43 10.72 330981 9.04 1.19 

Slope 
(°) 

< 5 4 1.04 41554 1.14 0.91 
5-15 40 9.87 343578 9.39 1.05 
15-25 105 26.23 830124 22.68 1.16 
25-35 114 28.31 1202846 32.87 0.86 
35-45 94 23.38 916493 25.04 0.93 
45-55 39 9.87 288379 7.88 1.25 
> 55 5 1.30 36434 1.00 1.30 

Dis. 
from 
rivers 
(m) 

< 200 36 8.98 258562 7.07 1.27 
200-400 27 6.73 239298 6.54 1.03 
400-600 36 8.98 228244 6.24 1.44 
600-800 39 9.73 220748 6.03 1.61 
800-1000 39 9.73 212394 5.80 1.68 
1000-1200 33 8.23 204404 5.59 1.47 
> 1200 191 47.63 2295758 62.73 0.76 

Dis. 
from 
faults 
(m) 

< 500 73 18.21 438527 11.98 1.52 
500-1000 56 13.97 426480 11.65 1.20 
1000-1500 45 11.22 411166 11.24 1.00 
1500-2000 44 10.97 387036 10.58 1.04 
2000-2500 44 10.97 362832 9.92 1.11 
2500-3000 43 10.72 337798 9.23 1.16 
> 3000 96 23.94 1295569 35.40 0.68 

 

 

 
Fig. 13 Importance of the conditioning factors: (a) Whole 
region; (b) Sub-Zone A; (c) Sub-Zone B. 
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extends beyond road construction. Therefore, the 
relationship between distance from roads and 
landslides may not be evident in this study. Although 
solar radiation intensity varies across different aspects, 
the distribution of landslides among the nine aspect 
classes shows little variation. The most favorable 
aspect condition for landslides is found to be south-
facing. Within the study area, landslides occur 
frequently when the value of IM ranges between 5500 
and 6500. The slope value directly determines the 
stress distribution, which affects the slope stability. It 
is observed that the majority of landslides in the study 
area occur on slopes ranging from 15° to 45°, indicating 
that this particular range is highly conducive to 
landslide development. Regarding the distance from 
rivers, the class 800-1000 m has the highest FR value. 
For the distance from faults, a total of 129 landslide 
cases occurred within the range of 0-1 km from faults, 
according for 32.2% of the total landslides recorded. As 
the distance from faults increases, the number of 
landslides gradually decreases. Notably, the FR value 
of the first class (< 500 m) is 1.52, representing the 
highest value observed.  

5.2 Role of division strategy based on fault zone 

As previously demonstrated, in terms of the 
generated maps, the conventional method 
overestimates the landslide susceptibility of the study 
area. The area classified as very low and low 
susceptibility accounts for only 32.22% of the whole 
region. The application of a division strategy based on 
fault zone proves effective in mitigating this 
overestimation. Table 4 demonstrates that, following 
the implementation of the division strategy, 50.45% of 
the area falls in the very low or low susceptibility 
regions. The value of landslide ratio/area ratio for high 
and very high susceptibility areas indicates that the 
proposed division strategy can encompass a greater 
number of landslides within a smaller high-risk area. 
In addition, the division strategy optimizes the 
performance of the ML model. In comparison to the 
AUC results of the whole region, both sub-zones show 
an increase in mean AUC value. According to Fig. 12, 
when employing the division strategy, 23.1% of the 
positive samples are incorrectly predicted as negative 
in sub-zone A, and 24% in sub-zone B. However, for 
the whole region, 31.6% of the positive samples are 
incorrectly predicted as negative. After implementing 
the division strategy, sub-zone A demonstrates a 6.44% 
increase in ACC, accompanied by a notable 

improvement of 9.39% in the F-score. Sub-zone B 
experiences a 4.34% increase in ACC, and its F-score 
shows a noteworthy improvement of 5.97%. Fig. 10 
shows that sub-zone B exhibits superior prediction 
uncertainty, as evidenced by a narrower range and a 
smaller standard deviation. The standard deviation of 
sub-zone A is not significantly different from that of 
the whole region. Fig. 13 indicates that the division 
strategy does not significantly change the importance 
ranking of conditioning factors. Aridity, elevation, and 
distance from roads remain dominant factors in all 
three regions.  

Chengkou County is one of the areas in Chongqing 
with highly intricate geological structures, where fault 
zones play a predominant and controlling role in the 
development features and spatial distribution of 
landslide disasters. Fault activities lead to a reduction 
in the strength of rock and soil, creating favorable 
conditions for the development of landslides through 
the provision of structural planes. Furthermore, 
landslides in the study area are influenced by factors 
such as the river systems, precipitation, and 
engineering activities. The development of landslides 
in this area exhibits a close correlation with the 
distance from faults. Table 6 indicates a gradual 
decrease in the number of landslides as the distance 
from the faults increases. More than 76% of historical 
landslides are distributed within 3 km of the fault 
zones, a pattern similar to the statistical characteristic 
observed by Zhou et al. (2021a) along the Anninghe 
fault zone.  

However, adopting the proposed division strategy 
inevitably leads to a limited number of landslide 
samples in sub-zone A, thereby affecting the 
construction of the model's dataset. By incorporating 
more detailed landslide data from the vicinity of the 
fault zones, the precision of the proposed strategy can 
be further enhanced. Future studies could employ data 
augmentation techniques, such as collecting landslide 
data along the Xianshuihe fault zone (Guo et al. 2015) 
and the fault zone in Qinghai-Tibet Plateau (Qi et al. 
2021), to train the model in sub-zone A. Transfer 
learning (Fu et al. 2023) may be a potential tool for 
addressing this problem.  

6    Conclusions 

In this study, a division strategy based on fault 
zone is proposed to assess the landslide susceptibility 
in Chengkou County, Chongqing City, China. A 
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comparative analysis is conducted, utilizing 388 
historical landslides from 1970 to 2018 in the study 
area, to demonstrate the superiority of this strategy. 
The 13 landslide cases from 2019 to 2020 are employed 
to validate the generated susceptibility map. This study 
comprehensively examines the model performance 
and the importance of 18 conditioning factors. 
Moreover, 100 random realizations of the random 
forest model are conducted to investigate the 
prediction uncertainty. The main findings can be 
summarized as follows: 

(1) The proposed division strategy based on fault 
zone introduces a novel approach to enhance the 
prediction accuracy of the landslide susceptibility 
mapping model. By implementing the division strategy, 
the accuracy, precision, recall, F-score, and AUC of 
both two sub-zones surpass those of whole region, 
indicating the effectiveness of this method. Comparing 
with the results of the whole region, the AUC of sub-
zone B experiences an increase of 6.15%, while sub-
zone A demonstrates a corresponding increase of 
1.66%. 

(2) The AUC distribution results of 100 random 
realizations show that the division strategy based on 
fault zone has little effect on the prediction uncertainty. 

(3) The conditioning factors that have a significant 
impact on landslide are aridity, elevation, and distance 
from roads. The whole region and two sub-zones all 
exhibit the same characteristics, with elevation, 
distance from faults, aridity, and distance from roads 
ranking highest among topographic factor, geological 
factor, environmental factor, and human engineering 
activity factors, respectively. 

(4) The proposed method can reduce the 

overestimation of landslide susceptibility in the study 
area. The value of landslide ratio/area ratio for high 
and very high susceptibility areas suggests that the 
proposed division strategy can encompass a greater 
number of landslides within a smaller high-risk area. 
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