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Abstract: The safety factor is a crucial quantitative 
index for evaluating slope stability. However, the 
traditional calculation methods suffer from 
unreasonable assumptions, complex soil composition, 
and inadequate consideration of the influencing 
factors, leading to large errors in their calculations. 
Therefore, a stacking ensemble learning model 
(stacking-SSAOP) based on multi-layer regression 
algorithm fusion and optimized by the sparrow search 
algorithm is proposed for predicting the slope safety 
factor. In this method, the density, cohesion, friction 
angle, slope angle, slope height, and pore pressure 
ratio are selected as characteristic parameters from 
the 210 sets of established slope sample data. Random 
Forest, Extra Trees, AdaBoost, Bagging, and Support 
Vector regression are used as the base model (inner 
loop) to construct the first-level regression algorithm 
layer, and XGBoost is used as the meta-model (outer 
loop) to construct the second-level regression 

algorithm layer and complete the construction of the 
stacked learning model for improving the model 
prediction accuracy. The sparrow search algorithm is 
used to optimize the hyperparameters of the above six 
regression models and correct the over- and under-
fitting problems of the single regression model to 
further improve the prediction accuracy. The mean 
square error (MSE) of the predicted and true values 
and the fitting of the data are compared and analyzed. 
The MSE of the stacking-SSAOP model was found to 
be smaller than that of the single regression model 
(MSE = 0.03917). Therefore, the former has a higher 
prediction accuracy and better data fitting. This study 
innovatively applies the sparrow search algorithm to 
predict the slope safety factor, showcasing its 
advantages over traditional methods. Additionally, 
our proposed stacking-SSAOP model integrates 
multiple regression algorithms to enhance prediction 
accuracy. This model not only refines the prediction 
accuracy of the slope safety factor but also offers a 
fresh approach to handling the intricate soil 
composition and other influencing factors, making it a 
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precise and reliable method for slope stability 
evaluation. This research holds importance for the 
modernization and digitalization of slope safety 
assessments. 

Keywords: Multi-layer regression algorithm fusion; 
Stacking ensemble learning; Sparrow search 
algorithm; Slope safety factor; Data prediction 

1    Introduction  

With the rapid and global development of slope 
engineering, ensuring slope stability has grown 
increasingly important. A slope is a complex 
geological body that is influenced by many factors. 
Accordingly, slope engineering is a complex nonlinear, 
uncertain, and dynamic system (Lin et al. 2022b). 
Accurately evaluating slope stability is one of the most 
difficult problems in rock mechanics. However, it is 
essential to preventing and dealing with landslide 
disasters (He et al. 2019; Nie et al. 2019; Pandit et al. 
2018). In tandem with developments in computer 
technology, machine learning techniques are 
increasingly being applied in slope engineering 
(Ahmed et al. 2020; Cai et al. 2020; Himanshu et al. 
2021), making slope stability analysis more efficient, 
accurate, and intelligent. By combining the latest 
research methods with actual slope cases, researchers 
(Zhang et al. 2023; Zhang et al. 2022a; Zhang et al. 
2022b) have innovated and made significant progress 
in the field of slope stability analysis. 

Various traditional (Li et al. 2022; Li et al. 2019; 
Liu et al. 2015) and numerical analysis methods(Dong 
et al. 2019; Peng et al. 2020; Zhao et al. 2020) have 
been widely used in numerous large slope projects to 
evaluate slope stability, and good results have been 
achieved. However, the traditional analysis method 
has high time and labor costs, and the numerical 
analysis method requires establishing a constitutive 
model and providing accurate parameters, which is 
neither time-saving nor economical in some slope 
stability evaluation projects. Meanwhile, with 
continuous developments in mining technology, the 
latest computer technology is being applied to slope 
stability analysis. Moreover, machine learning and 
deep learning technologies, which are widely utilized 
in various fields, are gradually being applied to slope 
problems (Pandey et al. 2022; Qin et al. 2022). Slope 
problems have diverse solutions with efficient, 

intelligent, and accurate prospects. Machine learning 
facilitates learning the complex relationship between 
the key characteristic parameters of different types of 
slopes and their safety. However, unlike the deep 
learning method, which demands numerous samples 
and has high equipment requirements and a long 
training period, the former is applicable to few 
samples. Its high speed, high precision, and low cost 
mean the slope safety factor can be rapidly evaluated 
and predicted (He et al. 2020). Many researchers 
have utilized machine learning methods to classify 
and predict slope stability. For instance, Feng et al. 
(2018), Zhou et al. (2019), Samui et al. (2013), Huang 
et al. (2020), and Haghshenas et al. (2021) used the 
naive Bayes classifier (NBC), gradient boosting 
machine, support vector classifier, improved K-
nearest neighbor, algorithm for harmony search and 
K-means aggregation  to determine whether the slope
is stable. However, the above methods can only
qualitatively describe the stability of the slope; they
cannot predict the slope safety factor or be used for
quantitative analysis. The safety factor is an
important indicator of slope stability. Moreover, the
slope stability can be directly quantified. Therefore,
predicting the slope safety factor using the regression
algorithm is comparable to classification in the
stability analysis. Notably, the former has engineering
significance and reference value. Marrapu et al. (2021)
used an artificial neural network (ANN) model to
predict the safety factor of the slope and compared it
with the results obtained via the limit equilibrium
method and measured field data. The ANN model was
found to be efficient and accurate in predicting the
slope safety factor. Erzin et al. (2013, 2014) and
Chakraborty et al. (2017) used ANN  and multiple
linear regression (MLR) to predict the slope safety
factor. Comparisons of the prediction results with the
calculation results obtained via the Bishop method
and finite element method (FEM) revealed that the
ANN model has higher reliability than the MLR
model. In applying the heuristic algorithm to slope
stability analysis, Kang et al. (2013), Hang et al.
(2014), Chu et al. (2015),  Khajehzadeh et al. (2012),
and Wang et al. (2022a) proposed using the artificial
bee colony algorithm, particle swarm optimization,
firefly algorithm, gravitational search algorithm, and
grey wolf algorithm to improve the model for
predicting the slope safety factor. The accuracy and
generalization ability of the model were improved to
varying degrees. Additional, optimization algorithms
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have been continuously improving. Some researchers 
improved their accuracy by combining improved 
optimization algorithms with machine learning. Wang 
et al. (2022b) proposed an improved their particle 
swarm optimization support vector machine (IPSO-
SVM) algorithm model. It was then compared with 
the original particle swarm optimization support 
vector machine (PSO-SVM) and single SVM model. 
The IPSO-SVM model had more realistic predictions 
and higher accuracy. Lin et al. (2022a) predicted the 
slope safety factor via a Bayesian optimization of 
convolutional neural networks. Although the accuracy 
of the models of predicting the slope safety factor as 
well as that of various optimization algorithms has 
been improved, their single-model characteristics 
result in instability errors in the prediction results 
when the sample data volume is small. 

To further improve the prediction accuracy of the 
safety factor in slope stability analysis and reduce 
instability error, a stacking ensemble learning 
algorithm (stacking-SSAOP) based on the sparrow 
search algorithm (SSA) (Xue et al. 2020) optimization 
multi-layer regression algorithm fusion is proposed in 
this study. In the stacking-SSAOP ensemble learning 
model, 210 sets of slope data consisting of six slope 
parameters as eigenvalues and slope safety factors as 
target values are selected as sample data sets, which 
are divided into 180 training data sets and 30 test 
data sets. For the ensemble learning algorithm model, 
Random Forest regression (RFR), Extra Trees 
regression (ETR), AdaBoost regression (ADAR), 
Bagging regression (BGR), and Support Vector 
regression (SVR) were selected as the base model 
(inner loop) to construct the first-level regression 
algorithm layer. XGBoost regression (XGBR) was 
used as the meta-model (outer loop) to build a 
secondary regression algorithm layer. Meanwhile, to 
reduce the instability error caused by subjectively 
setting hyperparameter values in the regression 
model and improve the prediction accuracy of the 
slope safety factor, the SSA, which has better 
performance, is introduced to optimize the 
hyperparameter values of all regression algorithm 
models in the model. The stacking-SSAOP ensemble 
learning model proposed in this study not only 
reduces the instability error during prediction, which 
is associated with the single model but also improves 
the accuracy of the prediction model. The predicted 
specific slope safety factor is used as a quantitative 
index to intuitively express the slope stability state. 

2  Ensemble Learning and Optimization 
Algorithms 

2.1 Stacking ensemble learning model 

The stacking ensemble learning method involves 
aggregating various classification or regression 
algorithms in machine learning algorithms (Costache 
et al. 2022; Guo et al. 2020; Shi et al. 2019; Yin et al. 
2021) This method utilizes one- and two-stage models. 
The one-stage model is a single model with a divided 
training set as the input, which is called the base 
model (inner loop). Notably, different single 
regression models can be selected as base models for 
construction and training. The two-stage model 
utilizes the predicted output value of the original 
training set in the base model as a new training set 
and inputs it into the meta model (outer loop). The 
final prediction result of the stacking ensemble 
learning model is the output from the meta -model. In 
this study, the base model (level-1) of the stacking 
ensemble learning model consisted of RFR, ETR, 
ADAR, BGR, and SVR. In contrast, XGBR is used as 
the meta-model (level-2). The stacking learning 
model is mainly used for regression prediction of the 
slope safety factor, and its model architecture is 
shown in Fig. 1. Due to the small sample size of the 
data set, a large test error was utilized in the training 
process to avoid the overfitting resulting from the 
training set error being too small.  Accordingly, K-
Fold cross-validation was applied to the base model to 
reduce model overfitting (Moayedi et al. 2021) . In 
this study, a 7-fold cross-validation (Fig. 2) was used 
to verify the effectiveness of this method in reducing 
model overfitting. 

2.2 Sparrow search algorithm 

For a prediction model constructed using a 
machine learning algorithm, the value of the 
hyperparameters is one of the main factors affecting 
the overall accuracy. Slight differences in the 
hyperparameters often result in different prediction 
results. Each regression model usually contains 
multiple hyperparameters, which together affect the 
prediction accuracy of the model. Therefore, 
subjective adjustments cannot produce the best 
results in terms of efficiency and accuracy. Thus, the 
SSA is introduced to optimize the hyperparameters of 
the regression model (RMHP-SSAOP), and the 
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optimal parameter values are obtained in the iterative 
operation by leveraging the automatic optimization 
ability of the algorithm to complete the parameter 
adjustment process efficiently and accurately. 

Fundamentally, SSA optimization simulates the 
foraging and anti-predating behavior of sparrows by 
using a heuristic search based on biological behavior. 
It utilizes an explorer–follower–warner model with a 
reconnaissance and warning mechanism to find the 
optimal solution. The manual search method (Wang 
et al. 2021) cannot handle multiple hyperparameters: 
for instance, finding the optimal parameters using the 
grid search method (Wicaksono et al. 2018) takes too 
long. In contrast, the random search method 
(Mantovani et al. 2015) takes less time than the grid 
search method but has lower reliability and 
applicability. Moreover, although the Bayesian 
optimization method (Cui et al. 2021; De et al. 2003; 

Mihaljević et al. 2021) utilizes previous search 
information, it easily falls into the local optimal 
solution. However, SSA has better global exploration 
and local-development abilities. By considering all 
factors in the population, the sparrow in the 
population moves to the global optimal value and 
quickly converges near the optimal value while 
avoiding falling into the local optimal solution. 

In SSA, individuals in the population can be 
divided into explorers, followers, and warners. 
Explorers mainly identify foraging areas and direct 
followers. The followers go after the explorer with the 
best fitness value to find food, thus establishing their 
own energy reserves while increasing their fitness 
value. Warners are attentive to their surroundings 
and alert sparrow populations to move quickly to a 
safe area when they sense danger. Before using the 
mathematical model to describe the sparrows’ feeding 

Fig. 1 Stacking ensemble learning model implementation process. 

Fig. 2 7-fold cross-validation implementation process. 
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behavior, the following abstract rules are defined: 
(1) In the entire population, the fitness value and

energy reserve of explorers are higher than those of 
followers, and the larger the fitness value is, the 
higher the energy reserve. Explorers are mainly 
responsible for searching for food-rich areas and 
defining foraging areas and directions to all followers. 

(2) Warners will immediately raise an alarm
when they detect a threat. When the alarm value 
exceeds the security value, the explorer will guide the 
population to safer foraging areas. 

(3) The algorithm defines the sparrow’s identity
according to its ability to find food: that is, the 
sparrow’s identity can change at any time, but the 
proportion of explorers to followers in the population 
is constant. 

(4) To gain more energy, followers with low
energy may fly to other places to find food. 

(5) Followers usually follow explorers with higher
energy reserves when foraging, but a competitive 
relationship also exists among them. Some followers 
compete for food to boost their energy by monitoring 
explorers. 

(6) When the enemy threatens a population, the
warner at the edge of the group moves quickly to a 
safe area, whereas the sparrow in the middle of the 
group moves randomly, thus reducing the probability 
of predation. 

Mathematical formulas for expressing the SSA 
are established from the above abstract criteria. The 
entire sparrow population X can be expressed as 
follows: 

ܺ = ێێۏ
ଵଵݔۍ ଵଶݔ ⋯ ଵௗݔ ⋯ ଶଵݔଵ஽ݔ ଶଶݔ ⋯ ଶௗݔ ⋯ ⋯ଶ஽ݔ ⋯ ⋯ ⋮ ⋱ ேଵݔ⋮ ேଶݔ ⋯ ேௗݔ ⋯ ۑۑےே஽ݔ

ې
   (1) 

 In Eq. (1), ܰ represents the number of sparrow 
populations and ݀ and ܦ represent the dimension of 
the problem (the number of hyperparameters) to be 
optimized. 

The fitness value of all sparrows can be expressed 
as follows: 

௫ܨ = ێێۏ
ଵଵݔ)݂ۍ ଵଶݔ ⋯ ଵௗݔ ⋯ ଶଵݔ)݂(ଵ஽ݔ ଶଶݔ ⋯ ଶௗݔ ⋯ ⋯(ଶ஽ݔ ⋯ ⋯ ⋮ ⋱ ேଵݔ)݂⋮ ேଶݔ ⋯ ேௗݔ ⋯ ۑۑے(ே஽ݔ

ې
    (2) 

In Eq. (2), ݂ is the fitness value. ܨ contains the 
fitness values of all individuals in the entire 
population. 

ܴଶ < ܵܶ indicates that the warning value (ܴଶ) is 
less than the safety value (ܵܶ). This means that the 
explorer has not found a threat, and the foraging 
environment is safe. Accordingly, it can guide the 
population toward extensive search operations. ܴଶ ≥ ܵܶ  indicates that some sparrows in the 
population have detected predators and warned other 
sparrows in the population. All sparrows need to fly to 
safe areas for foraging. The explorer location update is 
described as follows: 

 ௜ܺ,௝௧ାଵ = ൝ ௜ܺ,௝௧ ⋅ exp	ቀ− ௜ఈ⋅୑ୟ୶୍୲ୣ୰ቁ , 			݂݅	ܴଶ < ܵܶ௜ܺ,௝௧ + ܳ ⋅ ,ܮ 	 										݂݅	ܴଶ ≥ ܵܶ    (3) 

In Eq. (3), t represents the current iteration 
number, ௜ܺ,௝௧  represents the j-dimension position 
information of the i-th sparrow in the t-th iteration, ݎ݁ݐܫݔܽܯ  is a constant representing the maximum 
number of iterations, ߙ is a random [0,1] number, Q is 
a random number subject to a normal distribution, L 
is a 1 × ݀  with all elements being 1, ܴଶ ∈ [0,1] 
represents the early warning value, and ST ∈ [0.5,1] 
represents the security threshold for the current 
environment. ݅ > ௡ଶ  means that the i-th follower has a low

fitness and is not qualified to compete with the 
explorer for food, and needs to fly to other areas for 
food. When	݅ ≤ ௡ଶ , the follower will forage near the

optimal explorer. The location update of the followers 
is as follows: 

௜ܺ,௝௧ାଵ = ቐܳ ⋅ exp	൬௑౭౥౨౩౪೟ ି௑೔,ೕ೟୧మ ൰ , 				 ݂݅	݅ > ୬ଶܺ௉௧ାଵ + ห ௜ܺ,௝௧ − ܺ௉௧ାଵห ⋅ ା࡭ ⋅ ,ܮ 		݂݅	݅ ≤ ୬ଶ     (4) 

In Eq. (4),  ܺ୵୭୰ୱ୲௧  represents the position of the 
individual with the worst fitness in the t-th iteration, 
and ܺ௉௧ାଵ represents the individual position with the 
best fitness in the t+1th iteration. ܣ  is a 1 × ݀ -
dimensional matrix, and each element in the matrix is 
preset to -1 or 1, and ܣା =  .ଵି(்ܣܣ)்ܣ

The locations of the warners are randomly 
generated, and they comprise 10%–20% of the total 
sparrow population. When warners sense danger, the 
sparrow populations will adopt anti-predation 
behavior. fi  ≠ ௚݂ means that the individual is at the 
periphery of the population and needs to adopt anti-
predation behavior, which involves constantly 
changing positions to obtain a higher fitness value. ௜݂ = ௚݂ means that the individual is in the center of the 
population, and it approaches nearby peers to stay 
away from the danger zone. The location update of the 
warners is as follows: 
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୧ܺ,୨௧ାଵ = ቐܺbest 
௧ + ߚ ⋅ ห ௜ܺ,௝௧ − ܺbest 

௧ ห, 				if	 ௜݂ ≠ ௚݂ܺݔୠୣୱ୲௧ + ݇ ⋅ ൬௑೔,ೕ೟ ି௑್೐ೞ೟೟|௙೔ି௙ೢ |ାఌ൰ , 				 if	 ௜݂ = ௚݂    (5) 

In Eq. (5),  ܺ௕௘௦௧௧  represents the global optimal 
position in the t-th iteration; ߚ is the control step size, 
which is a random number that obeys a normal 

distribution with mean 0 and variance 1; ݇ ∈  ߝ ;[1,1−]
is set to a constant to avoid a denominator of 0; ௜݂ 
represents the fitness value of the current individual, 
and ௚݂  and ௪݂  represent the fitness values of the 
current global best and worst individuals, respectively. 

According to the above description and analysis, 
the implementation steps of SSA are as follows: 

Step 1: Set the initial parameters of the SSA 
model, including population size ܰ, objective function 
dimension ܦ , dimension upper boundary ܾݑ  and 
lower boundary ݈ܾ  of each variable, maximum 
number of iterations ݎ݁ݐܫݔܽܯ , safety threshold ܵܶ , 
explorer ratio ܲܦ, and warner ratio ܵܦ. 

Step 2: Initialize the population. 
Step 3: When ݐ < ݎ݁ݐܫݔܽܯ , calculate and rank 

individual fitness values and corresponding positions, 
identifying the individual with the best fitness value ௚݂ 
and its corresponding position ܺୠୣୱ୲ and marking the 
individual with the worst fitness value ୵݂  and its 
corresponding position ܺ୵୭୰ୱ୲. 

Step 4: Select the individual with fitness value ܲܦ · ܰ  as the explorer, update the position of the 
discoverer according to Eq. (3), and record the 
optimal position ܺ୭୮  occupied by the current 
discoverer. 

Step 5: After identifying the explorer, the 
remaining sparrows in the population are regarded as 
followers, and the positions of the followers are 
updated according to Eq. (4). 

Step 6: Select individuals with fitness values ܵܦ · ܰ randomly as warners, and update the location 
of the warner according to Eq. (5). 

Step 7: Calculate and update the sparrow’s fitness 
value; its own position; and the value of fg, fw, Xbest, 
Xworst. 

Step 8: Obtain the latest position and its fitness 
value and judge whether it is better than the old 
position and its fitness value. If it is better than the 
old one, replace the original position, and update the 
data and output; otherwise do not replace. 

Step 9: When ݐ > MaxIter, output the result and 
stop running; otherwise repeat steps 3–8. 

The SSA workflow is shown in Fig. 3. 

2.3 Stacking-SSAOP ensemble model 

A stacking-SSAOP ensemble learning model is 
proposed in this study. By using the SSA (Section 2.2), 
the six single regression models, namely RFR, ETR, 
ADAR, BGR, SVR, and XGBR, are optimized for Fig. 3 Flowchart of the sparrow search algorithm. 
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hyperparameters. These models are then integrated 
using the stacking algorithm (Section 2.1) to form a 
new machine-learning regression model to predict the 
slope safety factor. The implementation process from 
model building to data prediction is detailed in the 
following sections. 

3 Stacking-SSAOP Ensemble Model 
Application and Analysis 

3.1 Dataset and feature parameter analysis 

The main factors affecting slope stability are soil 
weight, cohesion, friction angle, slope angle, and pore 
pressure ratio (Guo et al. 2017; Niu et al. 2011; Wen et 
al. 2012; Ye et al. 2020). The size and quality of the 
data set directly affect the reliability of the prediction 
model. Therefore, to obtain precise and reliable model 
prediction results from the slope stability prediction 
analysis and reduce the impact of data differences and 
data inaccuracy on the algorithm accuracy, the 
geological conditions and stability evaluation index 
differences are considered. Accordingly, 210 sets of 
non-repeating slope data were selected from the 
literature (Fu et al. 2003; Li et al. 2015; Qiao et al. 
2010; Sun et al. 2022), and the sample data set was 
randomly arranged and combined. The first 180 sets of 
data were used for training, whereas the remaining 30 
sets were used for testing. The specific values are listed 
in Table 1. 

The correlation between the different parameters, 
their importance, and the correlation coefficient R 
were obtained by determining the sample attribute 
information of the characteristic parameters in the 
210 sets of sample data, as shown in Fig. 4. The aim 
was to clarify the implicit relationship between the six 
characteristic parameters and the slope safety factor 
as well as their respective importance in the 
prediction of the slope safety factor. Fig. 4a shows the 
univariate kernel probability density distribution and 
multivariate scatter distribution. Noticeably, 
compared with the slope with a safety factor of less 
than 1, the slope with a safety factor greater than 1 has 
a higher density, cohesion, friction angle, slope angle, 
and slope height because good rock and soil 
compactness and large shear strength parameters are 
the necessary conditions for maintaining slope. 
Specifically, these conditions ensure that the gravity 
of the soil and the shear stress generated under 
external loads are less than the shear strength of the 

soil. Fig. 4b shows the average importance of each 
characteristic parameter in all single regression 
prediction models, revealing the importance of the 
friction angle, slope angle, and slope height in the 
regression model prediction. In addition, as shown in 
Fig. 4c, most of the characteristic parameters have 
poor correlation (R<0.5), and only the internal 
friction angle and slope height (R = 0.595) are highly 
correlated. Therefore, no direct causal relationship 
between the characteristic parameters exists, 
implying that it is unnecessary to reduce the data 
dimension. Simultaneously, the correlation suggests 
that as the slope height increases, the internal state of 
the soil changes. These include alterations in soil 
stress distribution, enhanced compaction effects, and 
shifts in particle interactions. In the context of stress 
distribution, the base of the slope was subjected to 
heightened stress, leading to increased inter-particle 
friction and a subsequent rise in the internal friction 
angle. As for compaction, the added self-weight 
pressure from the increased slope height compacts 
the soil particles further, intensifying friction and 
elevating the internal friction angle. It is also essential 
to recognize that the link between slope height and 
internal friction angle can be affected by geological 
characteristics and soil type. Different geological and 
soil compositions might yield varied responses 
regarding the internal friction angle. 

In this study, the density, cohesion, friction angle, 
slope angle, slope height, and pressure ratio of these 
six factors were utilized as the model eigenvalues, 
whereas the slope safety factor was the target value of 
the model.  The distribution of each eigenvalue and 
the corresponding safety factor of the sample is shown 
in Fig. 5. 

3.2 Stacking-SSAOP Model parameters 
selection 

In this study, RFR, ETR, ADAR, BGR, and SVR 
were selected as the base regressor model (inner loop), 
and XGBR was selected for the meta regressor model 
(outer loop). How these models are realized is 
described in detail in references(Abedi et al. 2022; Lin 
et al. 2021b; Rahman et al. 2021; Ramos et al. 2021; 
Sari et al. 2019; Xie et al. 2022) To further improve 
the prediction accuracy of the stacking ensemble 
learning model, the 7-fold cross-validation method 
was selected to disturb the sample data set and reduce 
over-fitting. In terms of the hyper-parameter setting 
of the regression model, because the six regression 
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Table 1 Datasets of slope samples (Fu et al. 2003; Li et al. 2015; Qiao et al. 2010; Sun et al. 2022) 
No. ݎ ܪ ߚ ߮ ܿ ߛ௨ ௦ܨ No. ߮ ܿ ߛ ௨ݎ ܪ ߚ  ௦ܨ
1 18.50 25.00 0.00 30.00 6.00 0.15 1.09 52 26.80 60.00 28.80 59.00 108.00 0.25 1.25 
2 25.00 46.00 35.00 47.00 443.00 0.25 1.28 53 27.30 14.00 31.00 41.00 110.00 0.25 1.25 
3 25.00 55.00 36.00 45.50 299.00 0.25 1.52 54 100.00 20.00 23.00 0.00 20.00 0.30 1.15 
4 27.00 40.00 35.00 47.10 292.00 0.25 1.15 55 23.00 24.00 19.80 23.00 380.00 0.00 1.25 
5 27.00 35.00 35.00 42.00 359.00 0.25 1.27 56 27.30 26.00 31.00 50.00 92.00 0.25 1.00
6 25.00 63.00 32.00 46.00 300.00 0.25 1.45 57 18.80 20.00 20.00 30.00 50.00 0.30 1.30
7 10.00 39.81 20.36 0.98 32.50 0.70 1.01 58 25.00 120.00 45.00 53.00 120.00 0.00 1.12 
8 50.00 45.00 20.00 0.00 36.00 0.25 0.79 59 20.15 22.00 20.00 20.00 20.00 0.50 1.37 
9 26.89 150.00 33.00 52.00 120.00 0.25 1.80 60 25.00 46.00 35.00 44.00 435.00 0.25 1.20
10 20.00 0.00 36.00 45.00 50.00 0.25 0.79 61 31.30 68.00 37.00 49.00 200.50 0.25 0.97
11 19.00 30.00 35.00 35.00 11.00 0.20 2.00 62 18.80 20.00 10.00 25.00 50.00 0.30 0.81
12 19.63 11.97 20.00 22.00 12.19 0.41 1.35 63 7.00 26.57 18.80 1.00 20.00 0.10 0.90
13 22.40 10.00 35.00 30.00 10.00 0.15 2.00 64 22.40 10.00 35.00 45.00 10.00 0.40 0.96
14 10.00 45.00 22.40 10.00 35.00 0.40 0.90 65 20.00 20.00 36.00 45.00 50.00 0.25 1.53 
15 12.80 28.00 21.82 8.62 32.00 0.49 1.03 66 21.00 45.00 25.00 49.00 12.00 0.30 0.67
16 21.00 20.00 40.00 40.00 12.00 0.00 1.84 67 50.00 45.00 20.00 0.00 36.00 0.50 2.05
17 22.40 10.00 35.00 30.00 10.00 0.00 2.00 68 18.00 5.00 30.00 20.00 8.00 0.30 1.70
18 22.00 0.00 40.00 33.00 8.00 0.35 1.45 69 21.40 10.00 30.34 30.00 20.00 0.25 1.25 
19 27.00 50.00 40.00 42.00 407.00 0.25 1.44 70 27.30 31.50 29.70 41.00 135.00 0.15 1.01 
20 13.70 26.57 18.71 0.00 14.00 0.00 1.28 71 21.51 6.94 30.00 31.00 76.81 0.38 1.03
21 12.00 0.00 30.00 45.00 8.00 0.25 0.80 72 9.50 25.50 18.61 10.42 10.14 0.31 1.02
22 18.80 30.00 20.00 30.00 50.00 0.10 1.46 73 22.00 10.00 36.00 45.00 50.00 0.25 1.80
23 23.50 10.00 27.00 26.00 190.00 0.00 1.02 74 15.00 45.00 22.40 100.00 45.00 0.25 0.83
24 27.00 32.00 33.00 42.20 289.00 0.25 1.30 75 50.00 45.00 20.00 20.00 36.00 0.50 0.78
25 18.84 15.32 30.00 25.00 10.67 0.38 1.63 76 18.50 12.00 0.00 30.00 6.00 0.15 1.01 
26 21.00 20.00 24.00 21.00 565.00 0.00 1.26 77 76.81 31.00 21.51 6.94 30.00 0.38 1.49
27 31.30 68.00 37.00 46.00 366.00 0.15 1.34 78 25.00 48.00 40.00 49.00 330.00 0.25 0.97
28 27.00 40.00 35.00 43.00 420.00 0.25 1.15 79 10.04 15.24 18.80 0.00 20.00 0.33 1.25 
29 20.00 20.00 36.00 45.00 50.00 0.50 0.83 80 27.30 16.80 28.00 50.00 90.50 0.25 0.80
30 27.30 16.80 28.00 50.00 90.50 0.15 1.25 81 12.00 0.00 30.00 45.00 8.00 0.15 1.49
31 25.00 46.00 35.00 46.00 432.00 0.15 1.23 82 21.00 30.00 35.00 40.00 12.00 0.40 1.20
32 12.20 17.10 18.80 1.50 20.00 0.32 0.98 83 26.78 300.00 38.70 54.00 155.00 0.25 1.12 
33 6.20 16.72 18.80 0.00 20.00 0.30 0.75 84 18.00 24.00 30.15 45.00 20.00 0.12 1.25 
34 27.00 32.00 33.00 42.60 301.00 0.25 1.16 85 20.60 16.28 26.50 30.00 40.00 0.00 1.20
35 7.62 20.00 18.84 0.00 20.00 0.45 1.05 86 26.00 150.05 45.00 50.00 200.00 0.00 0.67
36 44.10 19.98 22.80 16.50 37.50 0.30 0.68 87 20.00 0.00 36.00 45.00 50.00 0.50 1.05
37 20.41 24.90 13.00 22.00 10.67 0.35 1.40 88 15.00 12.99 20.00 21.00 17.00 1.00 1.50
38 28.44 39.23 38.00 35.00 100.00 0.00 1.99 89 44.00 19.98 22.80 16.80 37.50 0.40 1.15 
39 24.00 0.00 40.00 33.00 8.00 0.30 1.58 90 27.00 40.00 35.00 43.00 420.00 0.15 1.20
40 31.30 58.80 35.50 47.50 438.50 0.25 1.20 91 31.30 68.60 37.00 47.50 262.50 0.25 0.62
41 20.00 0.10 36.00 45.00 50.00 0.25 0.79 92 5.10 25.25 18.05 5.75 18.00 0.64 1.30
42 22.00 20.00 36.00 45.00 50.00 0.00 1.02 93 27.00 32.00 33.00 42.40 289.00 0.25 1.42
43 18.84 57.46 20.00 20.00 30.50 0.00 2.05 94 27.30 10.00 39.00 40.00 470.00 0.25 0.65
44 18.68 26.34 15.00 35.00 8.23 0.00 1.11 95 19.10 10.00 20.00 30.00 50.00 0.40 1.43
45 25.00 48.00 40.00 45.00 330.00 0.25 1.62 96 27.30 10.00 39.00 41.00 511.00 0.25 1.24
46 27.30 10.00 39.00 40.00 480.00 0.25 1.45 97 27.00 37.50 35.00 37.80 320.00 0.15 1.43
47 25.00 55.00 36.00 44.50 299.00 0.25 1.55 98 27.30 10.00 39.00 40.00 470.00 0.25 0.90
48 31.30 68.00 37.00 47.00 213.00 0.25 1.20 97 27.00 37.50 35.00 37.80 320.00 0.15 1.43
49 10.67 25.00 18.84 15.32 30.00 0.38 1.63 98 27.30 10.00 39.00 40.00 470.00 0.25 0.90
50 25.00 63.00 32.00 44.50 239.00 0.25 1.49 99 22.40 10.00 35.00 45.00 10.00 0.35 0.99
51 16.00 70.00 20.00 40.00 115.00 0.00 1.11 100 9.10 26.60 18.31 5.16 15.12 0.10 1.05
Notes: ߛ , Density (kN/mଷ); ܿ , Cohesion (Mpa); ߮ , Friction angle (°); ߚ , Slope angle (°); ܪ , Slope height (m); ݎ௨ , Pressure ratio; ܨ௦ , Safety factor. 

(-To be continued-) 
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Table 1 Datasets of slope samples (Fu et al. 2003; Li et al. 2015; Qiao et al. 2010; Sun et al. 2022)(-Continued-) 

No. ݎ ܪ ߚ ߮ ܿ ߛ௨ ௦ܨ No. ߛ ܿ ߮ ௦ܨ ௨ݎ ܪ ߚ
101 22.50 18.00 20.00 20.00 290.00 0.00 0.97 156 12.00 0.00 30.00 35.00 4.00 0.25 1.46 
102 14.30 27.00 19.60 9.60 25.00 0.32 1.09 157 20.00 22.00 20.00 0.00 20.00 0.50 0.90 
103 19.06 11.71 28.00 35.00 21.00 0.11 1.02 158 17.00 33.69 18.80 1.00 20.00 0.43 0.97 
104 14.00 11.97 26.00 30.00 88.00 0.00 1.24 159 20.00 45.00 18.00 24.00 30.15 0.12 1.12 
105 27.00 37.50 35.00 37.80 320.00 0.25 1.15 160 4.90 18.43 18.80 1.20 20.00 0.27 1.10 
106 27.00 40.00 35.00 47.10 292.00 0.25 1.80 161 31.30 68.00 37.00 47.00 360.50 0.25 1.20 
107 26.70 150.00 33.00 50.00 130.00 0.25 1.80 162 18.50 12.00 0.00 30.00 6.00 0.25 0.78 
108 25.00 22.00 18.80 30.00 20.00 0.25 1.36 163 25.00 46.00 35.00 47.00 443.00 0.15 1.28 
109 18.80 30.00 10.00 25.00 50.00 0.10 1.40 164 18.85 10.34 21.30 34.00 37.00 0.30 1.29 
110 10.00 26.57 19.61 31.70 13.00 0.90 1.61 165 26.57 300.00 38.70 45.30 80.00 0.15 1.18 
111 20.00 0.00 24.50 20.00 8.00 0.35 1.37 166 20.00 20.00 19.72 30.00 30.00 0.50 1.54 
112 31.30 68.60 37.00 47.00 270.00 0.25 1.20 167 26.00 150.00 45.00 30.00 200.00 0.15 1.20 
113 22.40 100.00 45.00 45.00 15.00 0.25 1.80 168 27.30 10.00 39.00 40.00 480.00 0.15 1.55 
114 26.00 150.00 45.00 30.00 200.00 0.25 1.20 169 22.00 29.00 15.00 18.00 400.00 0.00 1.04 
115 26.43 50.00 26.60 40.00 92.20 0.15 1.25 170 22.40 10.00 35.00 30.00 10.00 0.25 2.00 
116 44.20 20.00 22.00 16.80 37.50 0.50 1.25 171 30.50 20.00 18.84 14.36 25.00 0.45 1.11 
117 27.30 10.00 39.00 40.00 470.00 0.15 1.42 172 18.50 25.00 0.00 30.00 6.00 0.25 1.09 
118 18.84 14.36 25.00 20.00 30.50 0.00 1.88 173 11.50 27.60 17.71 9.09 20.35 0.00 1.25 
119 25.00 55.00 36.00 45.00 239.00 0.25 1.71 174 26.70 50.00 26.60 50.00 170.00 0.25 1.25 
120 12.00 0.00 30.00 45.00 4.00 0.15 1.46 175 27.30 26.00 1.00 50.00 92.00 0.25 1.25 
121 8.00 45.00 18.45 18.06 10.10 0.14 0.97 176 25.00 46.00 35.00 50.00 284.00 0.15 1.15 
122 7.62 26.57 17.61 7.66 26.00 0.20 1.13 177 27.43 26.40 17.29 44.54 12.00 0.00 1.52 
123 26.49 150.00 33.00 45.00 73.00 0.15 1.23 178 18.80 25.00 20.00 30.00 50.00 0.20 1.21 
124 22.00 20.00 22.00 20.00 180.00 0.10 0.99 179 28.44 29.42 35.00 35.00 100.00 0.00 1.78 
125 110.00 41.00 27.30 14.00 31.00 0.25 1.25 180 27.30 10.00 39.00 41.00 511.00 0.15 1.43 
126 19.10 10.00 10.00 25.00 50.00 0.40 0.65 181 10.00 33.69 17.66 7.85 25.00 0.25 1.07 
127 30.00 20.56 19.61 14.71 20.00 0.00 1.75 182 31.30 58.80 35.50 47.50 502.70 0.25 1.20 
128 26.81 200.00 35.00 58.00 138.00 0.25 1.20 183 25.00 46.00 35.00 50.00 284.00 0.25 1.34 
129 27.30 31.50 29.70 41.00 135.00 0.25 1.25 184 20.00 40.00 40.00 40.00 10.00 0.20 2.31 
130 27.00 40.00 35.00 43.00 420.00 0.20 1.15 185 27.30 26.00 31.00 50.00 92.00 0.15 1.25 
131 22.40 10.00 35.00 45.00 10.00 0.30 0.90 186 31.30 68.00 37.00 49.00 200.50 0.25 1.20 
132 22.54 29.40 20.00 24.00 210.00 0.00 1.06 187 22.00 20.00 22.00 20.00 180.00 0.00 1.12 
133 21.40 10.00 30.34 30.00 20.00 0.15 1.70 188 25.00 46.00 36.00 44.50 299.00 0.15 1.20 
134 22.50 20.00 16.00 25.00 220.00 0.00 1.36 189 22.00 40.00 30.00 30.00 196.00 0.00 1.11 
135 27.30 10.00 39.00 40.00 480.00 0.25 1.45 190 27.30 10.00 39.00 41.00 511.00 0.25 1.47 
136 18.80 25.00 10.00 25.00 50.00 0.20 1.18 191 25.00 46.00 35.00 44.00 435.00 0.15 1.37 
137 31.30 68.60 37.00 47.00 305.00 0.25 1.20 192 18.84 14.36 25.00 20.00 30.50 0.45 1.11 
138 22.00 0.00 36.00 45.00 50.00 0.15 0.89 193 20.00 40.00 30.00 30.00 15.00 0.30 1.84 
139 20.00 0.10 36.00 45.00 50.00 0.50 0.67 194 31.30 68.00 37.00 47.00 213.00 0.25 1.20 
140 32.80 18.16 17.00 12.00 16.30 1.00 0.94 195 20.00 20.00 36.00 45.00 50.00 0.25 0.96 
141 18.85 24.80 21.30 29.20 37.00 0.50 1.07 196 20.00 20.00 36.00 45.00 50.00 0.20 0.96 
142 12.00 0.00 30.00 45.00 4.00 0.15 1.44 197 24.00 0.00 40.00 33.00 8.00 0.30 1.58 
143 25.00 46.00 35.00 46.00 432.00 0.25 1.23 198 27.00 40.00 35.00 47.10 292.00 0.15 0.96 
144 25.00 46.00 35.00 46.00 393.00 0.25 1.31 199 12.00 0.00 30.00 35.00 4.00 0.25 1.44 
145 22.00 20.00 36.00 45.00 50.00 0.25 0.89 200 50.00 45.00 22.00 20.00 36.00 0.25 1.02 
146 21.40 10.00 30.34 30.00 20.00 0.00 1.70 201 61.00 20.00 21.43 0.00 20.00 0.50 1.03
147 22.00 20.00 36.00 45.00 50.00 0.15 1.02 202 20.00 0.00 24.50 20.00 8.00 0.35 1.37 
148 21.82 8.62 32.00 28.00 12.80 0.49 1.03 203 25.00 46.00 35.00 46.00 432.00 0.25 1.23 
149 10.67 22.00 20.41 24.91 13.00 0.35 1.40 204 20.00 0.00 24.50 20.00 8.00 0.30 1.37 
150 25.00 46.00 35.00 46.00 393.00 0.15 1.45 205 18.00 45.00 25.00 25.00 14.00 0.30 2.09 
151 31.30 68.00 37.00 46.00 366.00 0.25 1.20 206 22.40 10.00 35.00 45.00 10.00 0.40 0.90
152 22.00 21.00 23.00 30.00 257.00 0.00 1.10 207 45.72 16.00 20.41 33.52 11.00 0.20 1.28 
153 8.56 44.50 18.50 20.00 10.00 0.00 1.15 208 21.00 35.00 28.00 40.00 12.00 0.50 1.43 
154 12.19 22.00 19.63 11.97 20.00 0.41 1.35 209 27.30 14.00 31.00 41.00 110.00 0.25 1.25 
155 88.00 30.00 14.00 11.97 26.00 0.45 0.66 210 18.00 0.00 30.00 20.00 8.00 0.30 2.05 

Notes: ߛ , Density (kN/mଷ); ܿ , Cohesion (Mpa); ߮ , Friction angle (°); ߚ , Slope angle (°); ܪ , Slope height (m); ݎ௨ , Pressure ratio; ܨ௦ , Safety factor. 
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(a) Feature data correlation

(b) Mean feature importance (c) Pearson correlation coefficient

Fig. 4 Analysis of feature relationships and importance. (a) Feature correlation; (b) Mean feature importance; (c) 
Pearson correlation coefficient of the data (R). 
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algorithm models contain one or more important 
hyper-parameters, the automatic optimization ability 
of the SSA was leveraged to obtain the optimal 
solution of the parameters in the iterative operation, 
thus optimizing the prediction accuracy of the model. 
Table 2 lists the default and optimized 
hyperparameter values of the five base regression 
models and the meta-regression model. 

3.3 Stacking-SSAOP Model prediction effect 
and analysis 

In this study, MSE (Xiao et al. 2022) was used to 
measure the prediction accuracy of the model. First, 
the parameter optimization comparison experiment 
of the base model was conducted. The five single 
regression models in the base model were divided into 

Fig. 5 Distribution of eigenvalues and safety factors of samples. 

Table 2 Hyperparameter optimization

Algorithm Default hyperparameters Optimal hyperparameters
Random 
Forest 

max_depth=None, min_samples_leaf=1.0, 
min_samples_split=2.0 

max_depth=11, min_samples_leaf=0.1, 
min_samples_split=0.1 

Extra 
Trees 

n_estimators=10, max_depth= None, 
min_samples_leaf=1.0 

n_estimators=78, max_depth=5.0, 
min_samples_leaf=0.1 

AdaBoost n_estimators=50, learning_rate=1.0 n_estimators=59, learning_rate=1.608 
Bagging n_estimators=10, max_samples=1.0 n_estimators=98, max_samples=0.28 
SVR C=1.0 C=20

XGBoost 
learning_rate=0.3, min_child_weight=1.0, 
gamma=0, subsample=1.0, 
colsample_bytree=1.0, reg_lambda=1.0 

learning_rate=0.57, min_child_weight=0.759, 
gamma=0.4, subsample=0.82, colsample_bytree=0.94, 
reg_lambda=0.1 
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the default hyperparameter numerical group and 
SSAOP hyperparameter numerical group. The specific 
hyperparameter values of each model are listed in 
Table 2. For each group, training and prediction were 
sequentially conducted using the 180 training sets 
and 30 test sets, and their respective MSEs were 
obtained. Thereafter, the stacking comparison test 
was conducted. The XGBoost regression model was 
used as the meta-model, and the outputs of the five 
single regression models in the base model after 
SSAOP were used as the input for the meta-model. 
The stacking ensemble learning method was used to 
integrate the above models. Finally, the slope safety 
factor was predicted. The MSE results of each model 
are listed in Table 3. The specific flow chart of the SSA 
for optimizing the superimposed ensemble learning 
prediction model is shown in Fig. 6. The predicted 
values of each single regression model before and 
after the SSA optimization and the predicted values of 
the stacking model are compared with the real values. 

Table 2 and Table 3 list the hyperparameters of 
each model and the default values before the SSA was 
optimized. Noticeably, the MSEs between the training 
and test data sets for all the models except ADAR are 
not ideal. The MSEs of the Random Forest training 
and test sets were 0.00652 and 0.03597, respectively, 
and the maximum difference was 0.02945; overfitting 
occurred. The MSE of the Extra Trees and XGBoost 
training data sets even drops too, indicating that each 
model had different degrees of overfitting and 
underfitting when the hyperparameters of the default 
values were used. However, the MSE of the training 
and test data sets optimized using the SSA was more 
acceptable. For Random Forest, the maximum MSE 

difference was reduced to 0.02131, and over-fitting 
was eliminated. The MSEs of the Extra Trees training 
and test data sets were improved from 0.00000 and 
0.04408 to 0.07543 and 0.11135, respectively, and 
those of XGBoost were improved from 0.00001 and 
0.02412 to 0.03279 and 0.05930, respectively. The 
MSEs of the training and test data sets of SVR and 
Bagging decreased by 0.01656 and 0.02935, and 
0.06038 and 0.05849, respectively, indicating that 
the single regression model optimized using SSA has a 
better (lower) MSE. More importantly, when the 
stacking-SSAOP method proposed in this study was 
used for data prediction, the MSE of the training data 
set was 0.03234, that for the test data set was 0.03917, 
and the maximum difference was only 0.00683 less 
than that for all other regression models (RFR: 
0.02131, ETR: 0.03592, ADAR: 0.01956, BGR: 
0.02740, SVR: 0.01245, XGBR: 0.02651). A 
comparison of the prediction results of the Stacking-
SSAOP ensemble learning model and the single 
regression model reveals that the Stacking-SSAOP 
ensemble learning model had the best data fitting 
degree. Moreover, it had a smaller mean square error 

Table 3 MSE comparison before and after sparrow 
search algorithm optimization 

Algorithm 
MSE before SSAOP MSE after SSAOP
Training 
datasets 

Testing  
datasets 

Training 
datasets 

Testing 
datasets 

Random Forest 0.00652 0.03597 0.06012 0.08143
Extra Trees 0.00000 0.04408 0.07543 0.11135
AdaBoost 0.03732 0.06123 0.03464 0.05420
Bagging 0.09703 0.12254 0.03665 0.06405
SVR 0.07956 0.10480 0.06300 0.07545
XGBoost 0.00001 0.02412 0.03279 0.05930
Stacking —— —— 0.03234 0.03917

Fig. 6 Flow chart of slope safety factor prediction. 
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(MSE) between the predicted and real values for the 
slope safety factor (0.03917). 

As shown in Fig. 7, the predicted value of the 
single regression model optimized via the SSA is 
closer to the true value than that predicted using the 
default parameter values. Moreover, the stacked 
learning model optimized by the SSA had better 
prediction than any single regression model after the 
same optimization. 

As presented in Table 2, Table 3, and Fig. 7, the 
stacking-SSAOP ensemble learning model proposed 
in this study has higher prediction accuracy and 
better data learning and model generalization ability 
than the single regression model. Therefore, the 
stacking-SSAOP ensemble learning model can better 
predict the slope safety factor and has relatively 
greater reference value in the field of slope stability 
evaluation than the other prediction models. With 
slope engineering in different countries gradually 
developing toward slope stability analysis, the 
stacking-SSAOP ensemble learning model method not 
only has great reference value for slope stability 
evaluation but also provides some technical reference 
for intelligent prediction and analysis to establish an 
early warning platform for slope stability. 

4      Discussions 

4.1 Stacking-SSAOP model superiority 

The machine learning regression models selected 
in this study have many advantages over other 
technical methods. First, the Random Forest 
algorithm can quickly process high-dimensional data 
without data scaling(Ao et al. 2019). The Extra Tree 
algorithm has good performance in regression 
problems because of its high random splitting and low 
variance (Yarveicy et al. 2017). The AdaBoost 
algorithm can generally fully consider the weight of 
each weak regressor and is not prone to overfitting. It 
has high accuracy in regression prediction 
problems(Ra et al. 2022). With good accuracy and 
stability, the bagging algorithm avoids overfitting and 
is robust to noise because it reduces variance in the 
results, thus reflecting the real distribution of the 
samples (Lin et al. 2021a). SVR is robust to outliers, 
suitable for small-sample learning, and has high 
prediction accuracy and excellent generalization 
ability(Babangida et al. 2016). SSA, which was 
proposed in 2020, has prominent advantages in terms 

of convergence speed, search accuracy, stability, and 
optimization ability over other swarm intelligence 
optimization algorithms(Yan et al. 2021). Thus, it was 
selected for building and optimizing the stacked 
learning model in this study. Second, the stacking 
ensemble learning model was constructed by cross-
constructing different types of ensemble algorithms 
and a single algorithm. While reducing the model 
correlation, it combines the advantages of high 
precision, high randomness, and anti-overfitting of 
the different algorithms. Moreover, it possesses the 
random learning ability and generalization ability of 
the stacking model and, thus, improved prediction 
accuracy. As shown in Fig. 8, the regression models 
between the base and meta-model in stacking are 
arranged and combined, and the 70% correlation of 
the combined models is less than 0.8 

To verify the superiority of the stacking-SSAOP 
method in predicting the slope safety factor, the 
AdaBoost, Bagging, and XGBoost algorithms, which 
are also integrated algorithms, were first compared. 
Table 3 indicates that although the above three 
integrated algorithms have better prediction results 
and their MSEs are lower than those of other 
algorithms, stacking-SSAOP has the lowest MSE 
(0.03917). Second, (Bui et al. 2019)revealed that the 
multilayer perceptron had the lowest MSE (0.49548) 
for slope safety factor prediction, whereas simple 
linear regression had the highest MSE. The MSE of 
the stacking-SSAOP method decreased by 92.09% 
and 99.24% for the training and test data sets, 
respectively, compared to that of those other models, 
which verifies its superiority. 

4.2 Limitations and future work 

In this study, the first attempt was made to apply 
the stacking-SSAOP model to predict slope safety 
factors. The model sensitivity of the selected 
characteristic parameters and the sample size of the 
constructed data set are important factors affecting 
the model's prediction accuracy. However, they were 
not of primary interest in this study. Therefore, in the 
follow-up research, the model sensitivity of existing 
and non-added different feature parameters and their 
impact on prediction accuracy will be analyzed, and 
the latest engineering data will be collected to expand 
the sample data set to further validate the 
generalization performance of the model, as well as 
improve the prediction accuracy and training 
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Fig. 7 Prediction results before and after optimization of 
six single regression models and stacking ensemble 
learning model (a) Result of RFR (b) Result of ETR (c) 
Result of ADAR (d) Result of BGR (e) Result of SVR (f) 
Result of XGBR (g) Result of stacking. 
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efficiency of the stacking-SSAOP model. 

5    Conclusions 

In this study, an integrated learning prediction 
model based on the stacking of multilayer regression 
algorithms that are optimized by SSA is established. 
The model learns the implicit relationship between 
the characteristic parameters of the slope sample data 
set and the safety factor to predict the slope safety 
factor. In addition, comparisons of the prediction 
effects of the single model before and after SSA 
optimization with the stacked ensemble learning 
prediction model reveal that the stacking-SSAOP 
model has marked advantages in the regression 
prediction of the slope safety factor. The main 
conclusions are as follows: 

 (1) Compared with other heuristic algorithms,
the SSA has better global exploration and local 
automatic optimization ability. The hyperparameters 
of the machine learning regression model proposed in 
this study are automatically optimized and the 
optimal parameter values are obtained. Thus, the 
tendency of the regression prediction model to overfit 
or underfit when the parameter setting is 
unreasonable is overcome. 

(2) Comparing the predictive performance of
individual regression models, including RFR, ETR, 
ADAR, BGR, SVR and XGBR, with that of the 
Stacking ensemble learning model confirms the 
superior data learning and predictive capabilities, 
higher prediction accuracy, and better fitting 
characteristics of the latter compared individual 
regression models. 

(3) The application of the Stacking ensemble
learning model combined with the Sparrow Search 
Algorithm Optimization Process (Stacking-SSAOP) 
further enhances the accuracy and reduces the 
prediction errors of the Stacking ensemble learning 
model. When conducting predictions on the test 
dataset, the Stacking-SSAOP model achieves a 
significantly lower MSE of 0.03917 than any of the 
individual regression models mentioned earlier. 
Moreover, compared to the MLP and SLR regression 
algorithms in other studies, the Stacking-SSAOP 
approach exhibits a substantial decrease in MSE 
ranging from 92.09% to 99.24%. This indicates that 
the proposed method can accurately and effectively 
predict the slope safety factor, thereby providing 
valuable technical insights for the analysis and 

warning platform of slope stability prediction. 
Furthermore, it serves as a supportive tool for slope 
reinforcement and early warning activities. 
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