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Abstract: Precipitation, a basic component of the 
water cycle, is significantly important for 
meteorological, climatological and hydrological 
research. However, accurate estimation on the 
precipitation remains considerably challenging 
because of the sparsity of gauge networks and the 
large spatial variability of precipitation over 
mountainous regions. Moreover, meteorological 
stations in mountainous areas are often dispersed and 
have difficulty in accurately reflecting the intensity 
and evolution of precipitation events. In this study, 
we proposed a novel method to produce high-quality, 

high-resolution precipitation estimates in the 
Tianshan Mountains, China, based on area-to-point 
kriging (ATPK) downscaling and a two-step 
correction, i.e., probability density function matching 
-optimum interpolation (PDF-OI). We obtained 1-km 
hourly precipitation data in the Tianshan Mountains 
by merging estimates from the Integrated Multi-
satellite Retrievals for Global Precipitation 
Measurement (IMERG) product with observations 
from 1065 meteorological stations in the warm season 
(May to September) during 2016–2018. The spatial 
resolution and accuracy of the merged precipitation 
data greatly increased compared to IMERG. 
According to a cross-validation with gauged 
observations, the correlation coefficient (CC), 
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probability of detection (POD) and critical success 
index (CSI) increased from 0.30, 0.50 and 0.24 for 
IMERG to 0.63, 0.65 and 0.38, respectively, for the 
merged estimates, and the root mean squared error 
(RMSE), mean error (ME) and false alarm ratio (FAR) 
decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 
mm/h and 0.69 to 0.52, respectively. The proposed 
method will be useful for developing high-resolution 
precipitation estimates in mountainous areas such as 
central Asia and the Belt and Road Initiative regions. 
 
Keywords: Hourly precipitation; Downscaling; 
merging; Tianshan Mountains; IMERG; Area-to-point 
kriging (ATPK) 

1    Introduction  

As a basic component of the water cycle of Earth, 
precipitation plays an important role in the fields of 
meteorology, climatology and hydrology (Kidd and 
Human 2011). High-resolution and high-quality 
precipitation data serve as the basis of mesoscale 
numerical weather prediction models and 
hydrological monitoring forecasts and have not only 
been utilized to test modern models of high-
resolution numerical weather forecasts but also 
provided critical information for monitoring meso- 
and small-scale precipitation events and preventing 
disasters caused by these events, such as mountain 
torrents, landslides and debris flows (Yu et al. 2013; 
Han et al. 2021). 

Currently, precipitation observations are 
acquired in three main ways, i.e., rain gauges, ground-
based radar and satellite remote sensing. Although 
station observations can be highly accurate, most 
stations are unevenly dispersed in low-altitude 
regions, and thus, the observation data are 
insufficiently representative. In contrast, weather 
radar-based precipitation data calculated based on 
the reflectivity factor and rainfall intensity (Z-I) 
relationship have a certain advantage in regional 
estimations. However, the Z-I relationship can vary 
greatly according to precipitation systems, seasons 
and regions, which affects the accuracy of radar-
predicted precipitation. In addition, radar detection is 
sensitive to surface obstructions, beam effects and 
velocity ambiguity, and therefore, the use of this 
method remains greatly restricted in practice. As 
another alternative, remote sensing and geographic 
information systems have rapidly developed, 

providing new approaches for large-scale 
synchronous precipitation observations (Chen et al. 
2017; Han et al. 2019). Satellite-derived precipitation 
products have the unique merits of being suitable 
under all weather conditions, having global coverage 
and reflecting the spatial distribution of precipitation; 
hence, these products are valuable for understanding 
global and regional precipitation distributions, as well 
as precipitation variations. However, satellite 
precipitation products usually have unsatisfactory 
spatial resolutions and low accuracy due to the 
limitations of the physical principles and algorithms 
used for retrieving satellite-based precipitation. 
Therefore, satellite-based precipitation products must 
be calibrated and downscaled prior to their 
application (Zheng et al. 2018; Kiyoumars et al. 2018; 
Yang et al. 2020). 

Considering the unsatisfactory spatial resolution 
of satellite precipitation products, a number of 
statistical downscaling methods have been proposed 
in recent years. By constructing statistical models 
linking low-resolution satellite precipitation with 
high-spatial-resolution environmental data, such as 
topography and vegetation, satellite precipitation data 
can be downscaled. However, due to its cumulative 
effects, precipitation presents more significant 
statistical correlations with environmental variables 
at the monthly and annual scales than at the daily and 
hourly scales, where the influence of weather 
processes becomes more noticeable (Yang and Luo 
2014a; Lu et al. 2018). To date, most studies on 
satellite precipitation product downscaling have 
focused on the monthly and annual scales (Immerzeel 
et al. 2009; Jia et al. 2011; Xu et al. 2015; Ma et al. 
2017; Chen et al. 2018; Zhang et al. 2018). However, 
for land hydrological simulations, weather forecasting 
and the monitoring of mountain floods and geological 
disasters, hourly precipitation monitoring at this 
weather scale is far more important than the large 
time scale precipitation (Shen et al. 2018). 

Some studies have developed methods to merge 
satellite precipitation data with observations to 
improve the quality of satellite precipitation products. 
These methods include objective statistical analysis 
(Boushaki et al. 2009), optimum interpolation (OI) 
(Xie and Xiong 2011; Shen et al. 2014; Wu et al. 2018; 
Tang et al. 2021), dual-core smoothing (Li and Shao 
2010), geographical difference analysis (Baik et al. 
2016; Xu et al. 2015), Bayesian models (Chiang et al. 
2021), machine learning (Zhang et al. 2021), and 
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generative adversarial networks (GANs) (Wang et al. 
2021). Although these merging methods increase the 
precision of precipitation estimates to some extent, 
they tend to directly merge satellite precipitation data 
and rain gauge-based observation data on 
considerably different scales, which inevitably 
introduces large errors in data merging (Park et al. 
2017; Verdin et al. 2015). Due to the discontinuity of 
the background field, direct merging results in 
remarkable deviations along the grid boundary of the 
original satellite precipitation data (Li and Shao 2010). 
To solve this data mismatch problem, Kyriakidis 
(2004, 2005) proposed a geostatistical downscaling 
method, i.e., area-to-point kriging (ATPK), which has 
an important feature: interpolation downscaling to 
the average of the sum of all points in a given area is 
equivalent to the original value of the given area. Over 
the past decade, ATPK has undergone rapid 
development and has been applied in various fields 
(Liu et al. 2008; Goovaerts 2010; Kerry et al. 2012; 
Wang et al. 2015; Zhang et al. 2017; Jin et al. 2018, 
Park et al. 2017; Chen et al. 2018). 

Due to the sparse distribution of rain gauges and 
the considerable errors of radar quantitative 
precipitation estimation, precipitation estimation 
over mountainous areas has always been a challenge. 
Previous studies mostly used a limited number of rain 
gauges over mountainous regions to correct the 
deviation of satellite precipitation or radar 
quantitative precipitation estimation through 
multiple linear regression, geographic information 
systems, neural networks and other methods 
(Gjertsen and Dahl 2002; Marquínez et al. 2003; Yin 
et al. 2004, 2008; Qi et al. 2010; Yang and Luo 2014b; 
Nan et al. 2018; Arulraj et al. 2019). Considering that 
spaceborne radar measurements are much less 
affected by the mountain blocking and beam 
broadening effect in the vertical direction, 
incorporation of space-based radar information into a 
ground-based radar network can improve the 
understanding of the precipitation rate and 
precipitation type in mountainous areas (Wen et al. 
2014). In this study, we performed experiments on 
the Integrated Multi-satellitE Retrievals for Global 
Precipitation Measurement (IMERG) hourly 
precipitation products, which were expected to 
provide high-spatiotemporal-resolution precipitation 
data for studying the mechanisms underlying the 
development of meso- and small-scale weather 
systems. The introduction of ATPK increased the 

spatial resolution of the satellite precipitation data 
without forfeiting the original information, which not 
only achieved downscaling for the satellite 
precipitation products but also secured a better match 
between the satellite precipitation data and observed 
observations, thereby laying a satisfactory data 
foundation for further merging. Furthermore, the 
probability density function and OI (PDF-OI) approach 
was used to merge the observed precipitation data with 
post-downscaling satellite precipitation to obtain the 
final precipitation grid dataset with an increased 
spatial resolution and a higher accuracy. This study 
may provide a new reference for researching the 
generation of high-spatiotemporal-resolution 
precipitation data in mountainous areas where 
precipitation data are lacking. 

2 Study Area and Data 

2.1 Study area 

The Tianshan Mountains constitute the largest 
mountain range in central Asia. The part of this 
mountain range within the territory of China is 
located within 39°N–45°N and 73°E–96°E and 
traverses the whole region of Xinjiang (Fig. 1) from 
the border between China and Kyrgyzstan to the 
Xingxingxia Gobi. The mountains within China 
stretch 1700 km long from east to west, accounting for 
approximately two-thirds of the total length of the 
Tianshan Mountains, and are 250–350 km wide from 
north to south. The Tianshan Mountains are known 
as the "water tower of central Asia", as 65% of the 
rivers in Xinjiang originate therein; these mountains 
are both the main source of water resources in 
northern and southern Xinjiang and the main runoff-
producing area in Xinjiang. The precipitation in the 
mountain area decreases gradually from northwest to 
southeast, and the precipitation on the northern slope 
is noticeably greater than that on the southern slope 
(Fig. 1b). The Tianshan Mountains are the climate 
watershed separating North and South Xinjiang and 
serve as an important natural barrier that affects the 
weather and ecological environment in Xinjiang and 
in the central and western regions of China. 

2.2 IMERG satellite precipitation product 

The GPM mission is the successor of the Tropical 
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Rainfall Measurement Mission (TRMM) carried out 
by the National Aeronautics and Space 
Administration (NASA) and Japan Aerospace 
Exploration Agency (JAXA). The purpose of the GPM 
mission is to provide new-generation global 
precipitation products with higher accuracy and 
higher resolution. GPM expands the sensor load of 
TRMM and enhances the precipitation observation 
capacity. The dual-frequency radar carried by the 
GPM Core Observatory (GPMCO) can detect the 
minimum echo intensity at the Ku band and adopts a 
high-sensitivity mode for interleaved sampling (Ka 
band). Furthermore, the microwave radiometer of the 
GPMCO has four more high-frequency bands than 
that of the TRMM satellite, which enhances the ability 
to observe traces of precipitation and solid 
precipitation. IMERG is the level-3 quasi-global GPM 

grid product. A comparison of the GPM IMERG 
product with other commonly used satellite 
precipitation products in the Xinjiang region showed 
that IMERG overperformed other products in terms 
of precision, particularly at the hourly scale (Lu et al. 
2018). Therefore, in this study, we used the “final-run” 
research-level IMERG precipitation product as the 
experimental data and selected the half-hourly 
precipitation between May and September (warm 
season) of 2016–2018 for downscaling and merging 
experiments. 

2.3 Observed precipitation data 

Hourly precipitation data observed by 1065 
automatic weather stations (AWSs) (shown in Fig. 1) 
in the Tianshan Mountains were employed in this 

 
Fig. 1 Map of the Tianshan Mountains in China showing (a) the digital elevation model (DEM) and spatial 
distribution of automatic weather stations (AWSs) and (b) the annual precipitation at national stations. 
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study. The temporal range of these data is consistent 
with that of the IMERG precipitation data. The 
observed data were provided by the Information 
Center of the Xinjiang Meteorological Bureau and 
subjected to a series of quality controls, such as an 
extreme climate value test, a single-station extreme 
value test and a data consistency test. To ensure 
independence between calibration and merging, data 
from the 9 international exchange stations in the 
Tianshan Mountains participating in the IMERG 
“final-run” product were excluded. As AWSs stop 
working in the cold season, we selected the warm 
season (May to September) for this study. According 
to the results of 10-fold cross-validation, the stations 
were randomly divided into 10 groups according to 
altitude. This treatment was meant to ensure the 
representativeness of the training samples and 
validation samples (Tang et al. 2015; Lu et al. 2018). 

3    Methodology 

In this study, we performed downscaling and 
merging over the GPM IMERG hourly precipitation 
product. Specifically, the original half-hourly IMERG 
precipitation product was accumulated to the hourly 
scale and downscaled from the original 0.1° resolution 
to 0.01° (approximately 1 km) using ATPK 
interpolation. Then, PDF-OI was utilized to correct 
the system bias of the 1-km IMERG data and merge 
these data with the observed precipitation data. 
Finally, a cross-validation analysis is applied for 
validation, i.e., the AWSs were divided into 10 groups; 
9 groups were selected each time, and 90% of the data 
were used for modeling. The remaining group 
contained 10% of the data to form an independent 
data set for accuracy verification of the merged 
products. 

3.1 Downscaling of the IMERG hourly 
precipitation data 

Considering the unsatisfactory resolution of 
satellite precipitation data, the half-hourly IMERG 
precipitation product was accumulated to the hourly 
scale and downscaled from the original 0.1° resolution 
to 0.01° using ATPK interpolation, which enabled the 
station data to be better matched with the satellite 
precipitation data. This processing further improved 
the merging effectiveness in the next step. 

ATPK is a downscaling method that interpolates 

unknown points with known data, where the estimate 
at an unknown point is the linear weighted sum of the 
data in its local area and nearby areas. The 
interpolation calculation is expressed as follows: 

1 0.1

1

( ) ( )
n

km
sat i sat i

i

P x P v




 
                    

  (1) 

where 1 ( )km
satP x  represents the precipitation at the 1-

km predicted site, 
0.1 ( )sat iP v



 
represents the low-

spatial-resolution precipitation grid around the 
predicted site,

 i  is the weight coefficient of the low-
resolution grid, and n represents the number of low-
spatial-resolution pixels around the predicted site. 
Similar to that of common kriging interpolation, the 
weight coefficient of ATPK is determined by the 
minimal error variance in the precipitation at the 
predicted site. The detailed equation is defined as 
follows: 
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where x  is the Lagrangian operator, which is used 
to control the unit sum of the weight coefficient j , 

( , )i jC v v is the covariance between the low-spatial-
resolution pixels vi and vj, and ( , )iC v x

 
is the 

covariance between the low-spatial-resolution pixel vi 
and the high-spatial-resolution pixel x. ( , )i jC v v
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equations: 
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where ( )iN v
 
is the number of predicted sites 

contained in pixel iv , ( , )k lC s s  is the covariance 
between predicted site ks  of low-resolution pixel vi 
and predicted site ls  of low-resolution pixel jv , and 

( , )kC s x  is the covariance between predicted site ks  
of low-resolution pixel vi and the current predicted 
site x. 

3.2 Precipitation estimation merging the 
IMERG-based and ground observation-
based hourly precipitation data 

(1) Error correction based on PDF matching 
PDF is an effective method to remove system 

( , )iC v x
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deviations, and it has been extensively applied in the 
error corrections of non-independent satellite data 
with deviations (Turk et al. 2003; Huffman et al. 
2003; Wang et al. 2007; Xie et al. 2011; Shen et al. 
2014). 

The main idea underlying the PDF error 
correction of satellite precipitation data is that the 
probability density based on ground precipitation 
observations is used to calibrate the probability 
density of satellite precipitation estimates. This 
treatment aims to match the corrected probability 
density of satellite precipitation estimates with that 
based on ground precipitation observations, thereby 
removing the system deviations of satellite 
precipitation estimates. The detailed PDF error 
correction process is described as follows: 

1) Suitable time and space windows were selected 
for each IMERG precipitation grid, and matching 
ground observations and satellite precipitation grid 
data were collected. Considering a high probability of 
zero precipitation and a small spatiotemporal scale of 
hourly precipitation and to ensure the acquisition of a 
stable probability density, with the IMERG 
precipitation grid to be corrected (hereafter referred 
to as the current grid) as the center, effective grid data 
pairs were selected for the time window based on a 
spatial window of 4°×4°. Considering the diurnal 
variation characteristics, based on the current time, 20 
d prior to the current date and 6 hours prior to the 
current time were selected as the time windows; that is, 
for each hourly correction, a total of 120 hourly matches 
of the effective grids within the 4°×4° spatial window 
where the current grid located were selected as the to-
be-corrected samples. The matched ground 
observations and satellite precipitation collected were 
subjected to PDF corrections according to the procedure 
described in the literature (Shen et al. 2014). 

2) The values of the grids whose spatiotemporal 
windows contained observation stations and did not 
lose both ground observations and satellite 
precipitation data were included in the statistics. The 
weight of each sample was calculated according to the 
spatial distance from the target grid and the time 
interval from the target time, and the samples were 
reordered according to their weights to determine the 
most effective samples. 

3) The cumulative probability density of the 
satellite precipitation value in each grid ( ) and the 
ground precipitation corresponding to the probability 
density ( ) were calculated to obtain the corrected 

value ( ). The postcorrection satellite precipitation 
value ( ) is calculated as . 

(2) OI 
Among the various interpolation methods, OI, 

which takes the precipitation ratio into consideration, 
is advantageous in the spatial interpolation of 
precipitation (Xie et al. 2011). In the OI analysis in this 
study, the IMERG precipitation after the deviation 
correction was taken as the initial estimation field, the 
observed measurements at the stations were taken as 
the true values, and the final precipitation analysis value 
in each grid Ak was equivalent to the sum of the initial 
estimated value at this grid Fk and the deviation 
between the observed measurement and the initial 
estimated value at this grid. This deviation was obtained 
after the weighted estimation of the deviations between 
the observed measurements Oi and the initial estimated 
values Fi at n grids within a certain range and is 
described as follows: 

  
1

n

k k i i i
i

A F W O F


                     (5) 

where k is the analyzed grid, i is the “valid grid” (each 
satellite precipitation grid corresponded to at least 
one meteorological station), and Wi is the weight 
function, which represents the weight allocated in the 
estimation of the deviation between the observed 
measurement and the initial estimated value at point i. 
Notably, in regions with a sparse distribution of 
stations, the analytical radius should be continuously 
adjusted to ensure that a certain number of valid grids 
can be searched in this region; from these grids, 
several valid grids closest to the analyzed grid can 
then be selected for OI. The weight function Wi in Eq. 
(5) was determined by the minimum error variance in 
the precipitation value Ak at the analyzed point: 

 22
K KE A T                           (6) 

where TK is the true value at point k. 
Assuming no deviation between the observed 

measurements and the initial estimation field and 
that the errors of the observations were not related to 
those of the initial estimation field, the weight 
function Wi in Eq. (5) can be obtained based on the 
following equation: 
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correlation, and i  
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standard deviation of the observation errors o
i  and 

that of the initially estimated errors at point i. For the 
sake of the solution of Wi in OI, 

f
ij , 

o
ij , o

i  and 
f

i
 
must all be known quantities; therefore, the 

error of the ground observations and that of the 
satellite-retrieved precipitation, as well as the 
correlation between them, should be preliminarily 
estimated. These quantities are generally given in 
statistical methods. 

Based on Eq. (7), the weight function Wi was 
determined, and the final precipitation analysis value 
Ak was obtained based on Eq. (5). 

3.3 Assessment of the merged precipitation 
estimates 

The observed measurements at stations were 
taken as the precipitation ground truth. In this study, 
the accuracy of the merged precipitation product was 
assessed based on independent stations at an hourly 
scale using 10-fold cross-validation, the results of 
which were further compared with the assessment 
outcome of the original IMERG hourly precipitation. 
Primarily, 7 statistical indices were selected for the 
assessment. These indices fell within four categories: 
1) category I, the correlation coefficient (CC) and 
Nash-Sutcliffe efficiency (NSE), which reflected the 
degree of consistency between the merged 
precipitation and the observed measured 
precipitation; 2) category II, the mean error (ME), 
relative bias (RB) and root mean squared error 
(RMSE), which described the size of the error in the 
merged precipitation compared with the observed 
measurement; 3) category III, the probability of 
detection (POD), false alarm ratio (FAR) and critical 
success index (CSI), which described the ability of the 
merged product to capture precipitation events; and 4) 
category IV, the Kling-Gupta efficiency (KGE), which 
is a synthetic index composed of the CC (r), deviation 
rate (β) and variation rate (γ). The calculations were 
based on Eqs. (8)–(16): 
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where , , n is the sample size, 

and xi and yi are the estimated values of the merged 
precipitation and the observed value at the 
meteorological station, respectively. NA, NB and NC 
are the times of the accurate prediction, vacancy 
forecast and omission of satellite precipitation, 
respectively. In this study, the hourly rain/no-rain 
threshold was set to 0.1 mm 

4    Results and Discussion 

4.1 Overall assessment 

Using 10-fold cross-validation and based on the 
observed hourly precipitation data in the Tianshan 
Mountains area in the warm season (May to 
September) of 2016–2018, we assessed the original 
IMERG data (OIMERG), downscaled data (DIMERG) 
and merged precipitation (MIMERG). Their accuracy 
was assessed by comparing the observed value at each 
station with the corresponding satellite-estimated 
precipitation, based on which the precision of the 
three sets of estimated data in the whole investigated 
area was comprehensively analyzed. The testing 
results of OIMERG, DIMERG and MIMERG based on 
the rain gauge-observed measurements are 
summarized in Table 1. The differences between 
DIMERG and OIMERG were small in terms of all 
statistical indices, which indicate that the primary 
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contribution of ATPK is to increase the spatial 
resolution of OIMERG, while it has a minor effect on 
the data accuracy. Then, we merged the DIMERG 
data with the rain gauge-based observations using the 
PDF-OI method and obtained the 1-km resolution 
merged precipitation product (MIMERG). As shown 
in Table 1, MIMERG was improved in all indices, 
particularly CC and CSI, which increased from 0.30 
and 0.24 to from 0.63 and 0.38, respectively, and 
RMSE decreased from the original 0.46 mm to 0.38 
mm. These results suggested that ATPK followed by 
the PDF-OI two-step correction method not only 
improved the spatial resolution but also increased the 
precision of precipitation estimation. 

Fig. 2 shows the scatter plots of the overall 
precipitation of all the data samples and the observed 
precipitation from 2016 to 
2018. In this figure, the rows 
of the panels indicate 
different time segments, 
while the columns indicate 
different precipitation 
estimation products. As 
shown in this figure, the 
scatters of the three products 
in different time segments 
were basically consistent. 
The data points of OIMERG 
and DIMERG were relatively 
scattered, whereas those of 
MIMERG were more 
concentrated and were 
distributed on both sides of 
the 1:1 line. These results 
indicated that the MIMERG 
data were better correlated 
with the observed data than 
any other product. 

Fig. 3 presents Taylor 
graphs comparing the 
outcomes of the three 
products with those of the 
rain gauge-based data. A 
Taylor graph (Taylor 2001) is 
a diagrammatic method for 
comprehensively assessing 
the accuracy of a model (or 
estimation). Based on the CC 
and RMSE, and standard 
deviation (SD), this method 

can quantify the consistency between a model (or an 
estimation) and observed values. A closer distance of 
the satellite estimation to the letter A (the observed 
data) indicates a better estimation effect. Taylor 
graphs are very helpful in assessing multiple complex 

Table 1 Overall estimation outcomes for the OIMERG, 
DIMERG and MIMERG precipitation products at the 
hourly scale from May to September during 2016–2018 
over the Tianshan Mountains.  

Product CC RMSE  
(mm/h) 

ME  
(mm/h) 

POD FAR CSI 

OIMERG 0.30 0.46 0.06 0.50 0.69 0.24 
DIMERG 0.29 0.47 0.07 0.51 0.70 0.23 
MIMERG 0.63 0.38 0.05 0.65 0.52 0.38 

Note: OIMERG, DIMERG and MIMERG represent the 
original, downscaled and merged IMERG data, 
respectively. 

 
Fig. 2 Scatter plots of OIMERG, DIMERG and MIMERG compared with the 
observed hourly precipitation values at all stations for (a) the whole period and (b-d) 
each year (2016–2018) from May to September over the Tianshan Mountains (the 
dotted lines are 1:1 lines). Note that OBS, OIMERG, DIMERG and MIMERG 
represent the observed data, original IMERG, downscaled IMERG and merged 
IMERG, respectively. 
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models or measuring the performances of different 
models (Tang et al. 2016). Fig. 3 shows the 
comprehensive assessment outcomes of all the 
samples, OIMERG (letter B), DIMERG (letter C) and 
MIMERG (letter D) in 2016–2018. By integrating 
these three indices into a single graph, the advantages 
and disadvantages of each estimation product can be 
visually and objectively reflected. As shown in this 
figure, the SDs of the observed data (letter A) were 
0.47, 0.61, 0.37, and 0.38 mm/h, and among the three 
estimation products, the SDs of MIMERG (0.42, 0.58, 
0.31 and 0.31 mm/h, respectively) were the closest to 
those of the observed data, whereas the remaining 
products exhibited varying differences. In terms of the 
CC and RMSE, MIMERG showed the closest 
outcomes to the observed data. In addition, the 
comprehensive assessment further showed that the 
distance of MIMERG (letter D) to the observed 
measurements (letter A) was the shortest among the 
products, which indicated 
that MIMERG have the best 
estimation effect. 

4.2 Spatial evaluation 

To further reflect the 
distributions of the 
assessment indices, all 
assessment data of the 
investigated area were 
included in the statistics. 
The nine assessment 
indices after 10-fold cross-
validation, i.e., NSE, PBIAS, 
KGE, CC, ME, RMSE, POD, 
FAR and CSI, were 
integrated into boxplots 
(Fig. 4). Boxplots describe 
data based on five 
statistical variables of a 
group of data, i.e., the 5th 
percentile, the first quartile, 
the median, the third 
quartile and the 95th 
percentile. Boxplots can 
reflect the distribution 
information of the data, 
such as the symmetry and 
dispersion. Overall, Fig. 4 
shows that MIMERG 

outperformed the other products in the nine indices, 
among which the NSE, KGE, CC, POD and CSI were 
more concentrated in the upper region, the RMSE and 
FAR were more concentrated in the lower region, and 
the PBIAS and ME were uniform on both sides of the 
zero-horizontal line. Specifically, the median NSE, 
KGE, CC, POD and CSI of MIMERG were higher (0.27, 
0.38, 0.6, 0.66, and 0.4, respectively) than those of 
OIMERG (0.06, 0.13, 0.4, 0.5, and 0.3) and DIMERG 
(0, 0.1, 0.4, 0.5, and 0.3), while the median RMSE 
and FAR of MIMERG (0.3 and 0.5, respectively) were 
lower than those of OIMERG (0.4 and 0.7) and 
DIMERG (0.43 and 0.7). Moreover, the distributions 
of the PBIAS and ME of MIMERG were close to zero, 
exhibiting satisfactory symmetry; furthermore, the 
first/third quartile values were the lowest among the 
three products. The outcomes of this overall assessment 
showed that the obtained merged precipitation data 
after ATPK downscaling and PDF-OI correction 

 
Fig. 3 Taylor graphs of the three precipitation products (OIMERG, DIMERG and 
MIMERG) for (a) the whole period and (b)-(d) each year (2016–2018) from May to 
September over the Tianshan Mountains. A: OBS; B: OIMERG; C: DIMERG; D: 
MIMERG. Note that OBS, OIMERG, DIMERG and MIMERG represent the observed 
data, original IMERG, downscaled IMERG and merged IMERG, respectively. 
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greatly outperformed the original OIMERG and 
downscaled DIMERG satellite precipitation products, 
indicating that the method proposed in this study, i.e., 
increasing the spatial resolution of the original 
satellite precipitation product followed by merging 
with observed precipitation data, was feasible. 

Fig. 5 shows the spatial distributions of the CC, 
RMSE, ME and CSI at each station in the investigated 
area. Overall, the spatial distributions of these indices 
in OIMERG were similar to those in DIMERG in both 
the high-value regions and the low-value regions.  
These results were consistent with the outcomes of 
the overall assessment provided in Table 1. MIMERG 
exhibited improvements in terms of all these indices. 
The CC values of OIMERG and DIMERG were 
basically below 0.4, whereas the CC values after 
merging with observed precipitation data (MIMERG) 
at most stations increased above 0.4. In terms of the 
RMSE, the number of stations whose precipitation 
was 0–0.2 mm/h according to MIMERG was 
noticeably greater than that according to OIMERG 
and DIMERG, whereas that of stations whose 

precipitation was 0.4–06 mm/h according to 
MIMERG was noticeably lower. This difference 
became more obvious in the Ili River valley and 
eastern regions. OIMERG and DIMERG both 
overestimated the ME in the high-altitude regions on 
both the southern and the northern sides of the 
Tianshan Mountains but underestimated the ME in 
the low-altitude regions. MIMERG effectively reduced 
the degrees of overestimation and underestimation of 
OIMERG and DIMERG, and the ME values at most 
stations were within ±0.025 mm/h according to 
MIMERG. The CSI values of OIMERG and DIMERG 
were less than 0.2 at nearly half of the stations, with 
those at the remaining stations below 0.4. In 
MIMERG, the number of stations whose CSI values 
were within the range of 0–0.2 was greatly reduced, 
and the CSI values at most stations increased to 0.4 
and above. The spatial distributions of these 
assessment indices suggested that the obtained 
MIMERG product after ATPK downscaling and PDF- 
OI merging outperformed the other satellite 
precipitation products, which validated the high-

 
Fig. 4 Box plots of the nine indices (NSE, PBIAS, KGE, CC, ME, RMSE, POD, FAR, and CSI) for the OIMERG, 
DIMERG and MIMERG precipitation products at the hourly scale from May to September during 2016–2018 over the 
Tianshan Mountains. Note that OIMERG, DIMERG and MIMERG represent the original, downscaled and merged 
IMERG data, respectively. 
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resolution precipitation estimation algorithm 
proposed in this study. 

4.3 Case study 

From July 31 to August 1, 2016, precipitation 
occurred extensively from west to east in Xinjiang 
during the “7.31” storm, which was particularly 
noticeable in the Ili region. This heavy precipitation 
event began at 17:00 (Beijing Time) on July 31 and 
ended at 17:00 on August 1, and the rainfall intensity 
peaked at approximately 02:00 on August 1. As an 
example, Fig. 6 shows the assessment outcome of the 
merged precipitation product in terms of the spatial 
distribution of precipitation during this event. Figs. 
6b, 6c and 6d show the precipitation distributions at 
03:00 on August 1 according to the AWS observations 
in OIMERG, DIMERG and MIMERG, respectively. 
According to the ground observations, the 
precipitation was mainly concentrated in the Ili, 
Bozhou and Tacheng regions, with the large values 
centered in the Ili region (Fig. 6a). The Ili Valley is 
surrounded by mountains on three sides, forming a 
trumpet-shaped valley that tapers to the east. Under 

the influence of water vapor from the Pacific, warm 
and humid air rises in the upwind direction, causing 
topographic-induced precipitation. Therefore, the Ili 
Valley is warm and humid with abundant rainfall, 
which is conducive to the growth of vegetation. 
Compared with the OBS outcome, Fig. 6b shows that 
the OIMERG satellite-retrieved precipitation 
noticeably underestimated the precipitation in the Ili 
region; in addition, the precipitation region according 
to OIMERG was far larger than the observed extent of 
precipitation, and the center of large values deviated 
to the east and north compared with the observed 
center. The DIMERG product (i.e., the precipitation 
grid product after ATPK downscaling) showed a 
variation tendency consistent with that of OIMERG 
but yielded a more precise precipitation distribution 
than OIMERG (Fig. 6c). In contrast, Fig. 6d shows the 
outcome of the MIMERG merged precipitation, which 
was obtained after the ATPK downscaling and PDF-
OI deviation correction. MIMERG increased the 
spatial resolution of the original satellite precipitation 
and ensured the consistency of the values between the 
estimates in regions with observation stations and the 
actual AWS-measured data while maintaining the 

 
Fig. 5 Spatial distributions of the (a) CC, (b) RMSE, (c) ME, and (d) CSI values for the three satellite precipitation 
products (OIMERG, DIMERG, and MIMERG) at the hourly scale from May to September during 2016–2018 over the 
Tianshan Mountains. Note that OIMERG, DIMERG and MIMERG represent the original, downscaled and merged 
IMERG data, respectively. 
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satellite-retrieved precipitation distribution in the 
regions without observation stations. Therefore, 
MIMERG effectively combines the merits of the two 
observation methods (i.e., satellite retrievals and 
ground observations). 

5    Discussion 

5.1 The advantage of ATPK 

ATPK, a downscaling method that interpolates 
data from known points to unknown points (Liang et 
al. 2015), has an important property—quality 
assurance; that is, the interpolation to the average of 
the sum of all points in any known surface is equal to 
the original value of the known surface. This property 
shows that ATPK is a downscaling method that fully 
retains the original data information. As a 
consequence, over the past decade, the ATPK 
geostatistical downscaling method has rapidly 
developed in a variety of fields, including soil science 
(Goovaerts 2010), medical geography (Kerry et al. 
2012), remote sensing image downscaling (Peter 2013; 
Wang et al. 2015, 2016; Zhang et al. 2017), and 
satellite precipitation products (Park et al. 2017; Chen 
et al. 2018). In this study, ATPK was applied to 
atmospheric variables from previous image 
processing downscaling technology. Nevertheless, 

although previous studies 
(Park et al. 2017; Chen et al. 
2018) demonstrated the 
effectiveness of applying the 
ATPK method to satellite 
precipitation products, these 
researchers applied 
downscaling to monthly 
precipitation products. In 
contrast, this study 
conducted experiments on 
hourly precipitation 
products to provide high-

spatiotemporal-resolution 
precipitation grid data to 
study the occurrence and 
development mechanism of 
meso- and small-scale 
weather systems. The 
introduction of the ATPK 
method improves the spatial 

resolution of satellite precipitation data without 
losing the original information and thus not only 
achieves the downscaling of satellite precipitation 
products but also ensures better spatial matching 
between satellite precipitation data and measured 
observations, thereby laying a good data foundation 
for further merging. 

5.2 Error feature analysis of OI 

Compared with other merging methods for 
precipitation data, OI is advantageous in that it 
considers the autocorrelation of each type of 
observation error as well as the correlations between 
different types of observations; with this merit, the 
weight function is no longer limited to a univariate 
distance relation. In addition, the interactions 
between the errors caused by different types of 
observations are also considered. Furthermore, OI 
solves for the optimum value within only a certain 
radius of the point to be analyzed, which is 
particularly suitable for the analysis of single 
variables with a large spatiotemporal variation rate 
such as precipitation. To calculate the OI, the key is to 
determine the weight value. Thus, multiple error 
parameters should be calculated first, which requires 
preliminarily estimating the errors between the 
satellite-retrieved precipitation and ground 
observations, and the error correlation must be 

 
Fig. 6 Hourly precipitation (mm/h) at 03:00 (UTC+8) on August 3, 2016, over the 
Tianshan Mountains: (a) OBS; (b) OIMERG; (c) DIMERG; (d) MIMERG. Note that 
OBS, OIMERG, DIMERG and MIMERG represent the observed data, original 
IMERG, downscaled IMERG and merged IMERG, respectively. 
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determined. For example, Fig. 7 shows a scatter plot 
of the MSEs and rainfall intensities of the satellite-
retrieved precipitation from June to August 2016. As 
shown in the figure, the error of the satellite-retrieved 
precipitation exponentially increased with increasing 
rainfall intensity. In addition, the correlation between 
the errors in the satellite estimates and those in the 
observed measurements at two random valid grids 
was plotted against the distance between the grids, 
yielding the error-related curve of the initial 
estimation field (Fig. 8). As shown in Fig. 8, the 
precipitation exhibited remarkable geostatistical 
features, where a closer distance indicated a better 
correlation, and vice versa. Data with different 
temporal resolutions have different error features. 
Furthermore, the thresholds set for spatiotemporal 
windows of different spatial resolutions were different. 
Considering these issues, further studies on deeper 
and more detailed analyses of error structures are 
necessary to acquire more precise precipitation 
estimates; i.e., the spatial window parameters of OI 
need to be continuously debugged or dynamically 
assigned according to the distribution density of 
stations around the current grid points to obtain the 
best correction effect. 

5.3 Selection of auxiliary information 

This study was carried out on an hourly scale. In 
addition to gauged precipitation data, previous 
studies (Immerzeel et al. 2009; Jia et al. 2011; Xu et al. 
2015; Ma et al. 2017; Chen et al. 2018; Zhang et al. 
2018) employed vegetation indices, terrain data, and 
other relevant auxiliary information for satellite data 
downscaling and correction. However, these studies 
focused mainly on relatively large time scales, such as 
the yearly and monthly scales, while on smaller (e.g., 
hourly) time scales, the correlations between 
precipitation and these auxiliary variables are 
relatively poor (Yang and Luo 2014a; Lu et al. 2018); 
thus, it is easy to introduce additional errors in the 
downscaling and correction processes, which 
increases the uncertainty in the results. Nevertheless, 
due to the limited information introduced, the 
downscaling and correction of satellite precipitation 
with only gauged precipitation data were restricted to 
some extent. This study used a geostatistical 
downscaling method to analyze hourly scale 
precipitation. In future research, we will try to 
introduce auxiliary information that can explain the 

variation in hourly scale precipitation to improve the 
prediction accuracy, and we will continue to explore 
the use of deep learning and other methods to jointly 
investigate observations from groups of stations and 
satellite- and radar-derived data to more accurately 
estimate precipitation. 

6    Conclusions 

In this study, based on hourly precipitation data 
from May to September of 2016–2018 in the 
Tianshan Mountains provided by 1065 regional AWSs 
in combination with the new-generation GPM IMERG 
satellite precipitation product, we proposed a method 
comprising ATPK downscaling followed by a PDF-OI 
two-step correction for research on the merging of 
multisource precipitation data in a mountainous 
region. This study led to the following conclusions. 

 
Fig. 7 MSEs of the IMERG data under different rainfall 
intensities. 
 

 
Fig. 8 Error correlation for the bias-corrected IMERG 
product as a function of the separation distance 
between two grid boxes. 
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(1) ATPK downscaling effectively increased the 
spatial resolution of the original IMERG satellite 
precipitation product without forfeiting data. A 
comparison between the data before and after 
downscaling using the observed data as the reference 
did not show significant differences in statistical 
indices. 

(2) The PDF-OI results showed an increased 
spatial resolution and a greatly improved accuracy. A 
cross-validation experiment showed that the CC, POD, 
and CSI after PDF-OI increased from 0.30, 0.50 and 
0.24 to 0.63, 0.65 and 0.38, respectively, and the 
RMSE, ME and FAR decreased from 0.46 mm/h, 
0.06 mm/h and 0.69 to 0.38 mm/h, 0.05 mm/h and 
0.52, respectively. 

(3) Spatial distribution analysis showed that 
MIMERG effectively combined satellite precipitation 
estimates with gauged precipitation observations. For 
the areas without ground observations, the satellite 
precipitation data were used as the primary data. In 
addition, the final obtained merged precipitation 
product increased the resolution from the original 
~10 km to 1 km, which enabled MIMERG to more 
precisely depict the precipitation structure. 

In this study, we conducted multisource 
precipitation merging experiments in Xinjiang, China, 
and meaningfully explored a method to develop 
precipitation grid datasets for arid regions. We made 
a preliminary attempt to perform the geostatistical 
downscaling of satellite precipitation and achieved the 
expected results at the hourly temporal scale. In 
future work, deeper research on parameter 
optimization in the process of ATPK downscaling and 
PDF-OI merging is needed to further improve the 
precipitation estimates. 
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