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Abstract: Forestry has played an important role in 
hazard mitigation associated with debris flows. Most 
forest mitigation measures refer to the experience of 
soil and water conservation, which disregard the 
destructive effect of debris flows, causing potentially 
serious consequences. Determination of the effect of a 
forest on reducing debris-flow velocity and even 
stopping debris flows requires distinguishing between 
when the debris flow will destroy the forest and when 
the trees will withstand the debris-flow impact force. 
In this paper, we summarized two impact failure 
models of a single tree: stem breakage and 
overturning. The influences of different tree sizes 
characteristics (stem base diameter, tree weight, and 
root failure radius) and debris-flow characteristics 
(density, velocity, flow depth, and boulder diameter) 
on tree failure were analyzed. The observations 

obtained from the model adopted in this study show 
that trees are more prone to stem breakage than 
overturning. With an increase in tree size, the ability 
to resist stem breakage and overturning increases. 
Debris-flow density influences the critical failure 
conditions of trees substantially less than the debris-
flow velocity, depth, and boulder diameter. The 
application conditions of forests in debris-flow hazard 
mitigation were proposed based on the analysis of the 
model results. The proposed models were applied in 
the Xiajijiehaizi Gully as a case study, and the results 
explain the destruction of trees in the forest 
dispersing zone. This work provides references for 
implementing forest measures for debris-flow hazard 
mitigation. 
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1    Introduction  

In mountainous areas, forestry is an important 
part of bioengineering and has an important role in 
mitigating debris-flow hazards (Cui et al. 2007; Liu et 
al. 2017; VanDine 1996). Restoring forest cover can 
greatly reduce the hazards associated with debris flow 
by strengthening loose soil (De Baets et al. 2006; 
Wahren et al. 2012; Vannoppen et al. 2017) and 
regulating surface concentration flows (Stokes et al. 
2014; Wang et al. 2020; Arnone et al. 2016; Ng 2017). 
In addition, forests can dissipate debris-flow energy, 
weaken the peak flux, and limit the flow mobility path 
by presenting a rigid barrier (Booth et al. 2020; 
Guthrie et al. 2010; Johnson et al. 2000). Forests 
have been commonly utilized around the world to 
mitigate debris-flow hazards (Huebl and Fiebiger 
2005; Carladous and Piton 2016; Cui et al. 2003; 
Stokes et al. 2010). Although there have been many 
successful applications, most current debris-flow 
forest measures reference the experience of erosion 
control and disregard the destructiveness of debris 
flows (Cascini et al. 2020; Cui et al. 2013; Thouret et 
al. 2020). Improper use of forest may result in tree 
destruction, which leads to large wood debris in 
debris flows and thus wood jams (Galia et al. 2018; 
Piton and Recking 2015; Schmid et al. 2016), which 
can increase the scale of a subsequent hazard and 
result in a more serious event. As a consequence, the 
function of a forest on reducing debris-flow velocity 
and even stopping debris flows depends on whether 
the debris flow destroys the forest or the trees 
withstand the debris-flow impact force. 
Understanding the critical failure condition of trees 
can provide specific information about the hazard 
process (Mitsch 1998; Whelchel et al. 2018). 

The main cause of forest damage is additional 
loading over the tree stem strength, which causes 
stem breakage, if the bending moment applied 
exceeds the strength of the root-soil plate, which leads 
to overturning (Quine and Gardiner 2007). Empirical 
analysis and mechanical calculations are usually 
performed to study tree damage. Peltola (1993, 1999) 
constructed models for the mechanism of windthrow 
for a single tree, and suggested that trees with a 
height-to-diameter ratio over a certain threshold were 
subject to a greater risk of stem breakage and 
overturning. Dorren (2005a, 2005b) calculated the 
ability of rockfall to damage trees and the resulting 
movement path based on experiments, and the results 

suggested an exponential relationship between the 
tree breast height diameter and the maximum 
amount of energy that tree stem breakage can 
dissipate. Stokes (2005) measured the spatial position 
and type of 423 damaged trees caused by rockfall in 
the French Alps, and discussed the relationship 
between the damage mode of stem break and 
occurrence of overturning of different species. Tanaka 
(2009) conducted an investigation after a flood event, 
considering that the tree damage mode can be 
expressed as a function of stem diameter and that 
severe scour may reduce the threshold of overturning. 
Tanaka (2011) analyzed the effects of root architecture 
and physical tree characteristics on tree overturning. 
Gardiner (2000) developed mathematical models for 
predicting the critical wind speed and turning 
moment needed to break the stem and overturn of 
coniferous trees. Olmedo (2006, 2018) built a model 
which use discrete element method to analyze the 
dynamic response of tree stems to rockfall impacts. 
Many efforts have been made to calculate the damage 
threshold of trees in other hazards, however, research 
on the relationship between debris flows and tree 
damage is still lacking. The results for other hazards 
may not be directly applied to debris flows due to the 
complex characteristics of debris flows (Iverson and 
Denlinger 2001). The dynamic damage mechanism of 
a tree in debris flows is difficult to quantify because 
the debris-flow impact distribution and impact force 
can vary greatly with the change in debris-flow 
characteristics and boulder size (Hu et al. 2011). 
Considering such a mechanism is still an effective 
method for evaluating the impact force of debris flows 
on a structure in static conditions (Vagnon 2019; 
Zeng et al. 2014). 

In this paper, we summarized the impact failure 
models of a single tree induced by debris flow, 
proposed mechanical models for tree breakage failure 
and overturning failure, and analyzed the important 
impact factors. We investigated case studies of the 
mechanical model, and calculated the critical velocity 
and boulder diameter of the debris flow. The 
application conditions of forests in debris-flow hazard 
mitigation were proposed based on the analysis 
results. 

2    Methods 

2.1 Impact failure modes of a tree in debris 
flows 
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A maintained forest has a persistent role in 
controlling debris flows. Trees should be able to 
maintain healthy growth patterns and even endure 
disturbances caused by debris flows (Polster and Bio. 
2002). To better understand the destructive effect of 
debris flows on trees, we summarized two types of 
impact failure modes for a single tree based on field 
investigations and literature inventories. The first 
failure model is tree stem breakage, which occurs 
when the debris-flow impact force exceeds the 
bending strength of a tree stem and then causes 
damage (Fig. 1a, 1b and 1d). The second failure mode 
is tree overturning, which occurs when the debris-
flow impact force exceeds the anchoring capacity of 
the roots systems (Fig. 1c and 1d). Presently, the 
dynamic response of trees to debris-flow impact is 
still unclear. We applied a static model to analyze the 
damage of a single tree. We estimate the critical 
debris-flow velocity and large boulder diameter for 
different tree sizes and debris-flow depths. The results 
can help to analyze the application of forests in 
debris-flow hazard mitigation. 

2.2 Debris-flow impact models 

The debris-flow impact force can be divided into 
the static pressure force, dynamic pressure force, and 
impact force of a large boulder collision (Poudyal et al. 
2019). A tree can be assumed to be a cylinder, 
considering that debris flows impact trees above 
ground level. The static pressure force can be 
assumed to be zero when considering a cylindrical 
tree. According to the balance of momentum and 
impulse principle for estimating impact force, a 
hydraulic model is adopted to calculate the debris-
flow dynamic pressure (Hungr et al. 1984; Moos et al. 
2018; Zhang 1993; Vagnon 2019).  

Pm=a×ρd×v2×sinθ         (1)

where α is the empirical pressure coefficient, ρd is the 
debris-flow density, v is the debris-flow velocity, and θ 
is the angle between the flow direction and the 
direction normal to the impacting plane. 

A considerable amount of literature on boulder 
collisions in debris flows has been published. These 
studies mostly focus on boulder collisions against 

  

  

Fig. 1 Trees stem breakage and overturning caused by a debris flow. 
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rigid structures, such as check dams and bridge piers 
(Rossi and Armanini 2019; Wang et al. 2018). Derived 
from the Hertz contact theory, which considers the 
elastic collision of spherical particles, the impact force 
of debris flow on a protective structure was deduced, 
and the corresponding expression was modified via 
experimental results (He et al. 2016). Most of the 
results were calculated by assuming the parameters of 
stone and concrete, which do not apply to trees. A tree, 
as a biological material, will bend under the action of 
external forces, and the structural deformation is 
more important than the contact deformation (Hungr 
and Morgan 1984). Plastic deformation of a tree stem 
has irreversible effects on the growth of the tree, may 
cause the tree to lose the ability to hydrologically 
adjust, may result in the roots systems providing less 
soil reinforcement, and may even kill the tree. 
Therefore, this paper considers a tree as a cylindrical 
cantilever structure and calculates the critical 
condition of the elastic deformation of a single tree 
under the action of external forces, the tree bending 
strain energy (Vε) can be expressed as follows: 

 
2 3'

6
bF hV
EIε =  (2)

The boulder kinetic energy (Ek) can be expressed 
as follows: 

 21

2kE mv=  (3)

By equating the tree bending strain energy with 
the boulder kinetic energy, the boulder impact force 
Fb can be written as: 

 
2

b 3

3EImvF =
h'

 (4)

where E is the bending elastic modulus of the tree 
stem, I is the area moment of inertia of the stem, v is 
the debris-flow velocity, and h' is the impact height of 
the boulder, and m is the mass of the boulder, which 
can be express as 4πr3ρb/3, where ρb is the boulder 
density. In this paper, it is assumed that the debris-
flow velocity is the same as the boulder, and that the 
diameter of the boulder is equal to the debris-flow 
depth (Hungr and Morgan Kellerhals 1984). The 
impact height of a large boulder is equal to half of the 
debris-flow depth, while the destruction of trees is 
due to the peak impact force of the debris flow and 
boulders. 

2.3 Stem breakage failure model 

Tree stem breakage is mainly affected by the stem 
structure and material properties. The stem tensile 
strength parallel to the grain is greater than its 
compressive strength parallel to the grain. A tree stem 
will break on the side under compression when it is 
bent. The relationship between the ultimate bending 
moment of the stem (Mu) and the bending stress of 
the stem (σ) can be expressed as (Peltola and 
Kellomäki 1993): 

 
2

u
IM
d
σ=  (5)

where d is the stem base diameter, and I is the area 
moment of inertia of the stem, and can be expressed 
as follows: 

 
4

64

dI π=  (6)

The schematic diagram of the stem impact by 
debris flows and boulders is depicted in Fig. 2a. 
Different from stem breakage in wind or a snow 
avalanche that external forces will be applied to the 
crown, which causes the tree weight contributes a lot 
to the stem to bent (Peltola et al. 1999). Debris flows 
mainly act at the base of the stem and produce only 
slight bending. Therefore, disregarding the stem 
bending influence of the tree weight, tree bending is 
affected only by the debris flow. The relationship 
among the bending moment applied by the debris 
flows (Md), the boulder impact force (Fb) and the 
debris-flow dynamic pressure (Pm) can be expressed 
as 

 21
'

2d m bM P h d F h= +  (7)

where h is the flow depth and h' is the impact height 
of the boulder. When Mu is equal to Md, the tree stem 
is at its failure point. By combining Eqs. (1), (5), (6) 
and (7), the critical velocity and boulder diameter (D) 
of the debris flow at the ultimate bending moment of 
the stem are related by the following expression: 

33 2
2 2

3

1 '
sin

32 2 8 2 '
b

d
EDd vh dv h d
h

ρπ σ παρ θ= + (8)

2.4 Tree overturning failure model 

Numerous research studies have suggested that 
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the overturning failure of trees is controlled by the 
tree species, root spatial distribution, soil friction 
angle and soil cohesion (Feistl et al. 2015; Moos and 
Fehlmann 2018; Quine and Gardiner 2007). These 
factors are complex in the natural environment, 
which makes them difficult to quantify and analyze. 
Therefore, this paper refers to the overturning failure 
model proposed by Bartelt (2001). As shown in Fig. 
2b, it is assumed that a lump of soil containing the 
root cluster and surrounding soil is uprooted when a 
tree overturn. The main shape of the lump of soil is a 
half-cylinder with root failure radius rf and length 2rf. 
The failure surface of the lump of soil lies outside the 
extent of the root cluster, so the fracturing of the tree 
roots is disregarded. It is assumed that the weight of 
the tree disperses with the angle of internal friction 
and slip length (S0) is:  

 0S 2 frϕ=  (9)

where φ is the internal friction angle, considering that 
other parts of the slip surface contribute less, and the 
main resistance force during overturning is provided 
by S0. The overburden stress that acts on the slip 
surface is composed of three parts. The first part of 
the overburden stress arises from the tree weight (σt) 

(Riley et al. 2019): 

 t
02

t

f

m g
r S

σ =  (10)

where mt is the tree weight, g is the gravitational 
acceleration. The second part of the overburden stress 
arises from the weight of the lump of soil (σl). We 
consider the stress at the center of mass of the lump 
of soil: 

 
4

cos
3

f
l s

r
gσ ρ ψ

π
=  (11)

where ψ is the slope angle, and ρs is the soil density. 
The third part of the overburden stress arises from the 
debris-flow depth (σd), which also considers the stress 
at the lump center of mass:  

 cosd d hgσ ρ ψ=  (12)

The mean shear stress on the slip surface (τ) is: 

 ( ) tant t t cτ σ σ σ ϕ= + + +  (13)

where c is the soil cohesion. Therefore, the total anti-
overturning moment on the slip surface (Ms) is: 

 
2

02s fM r S τ=  (14)

 

 
Fig. 2 Schematic illustration of a tree impacted by debris flows with flow depth h on a slope with angle ψ: the 
corresponding static mechanical model of a single tree is depicted on the right hand side. (a) Stem breakage failure. 
(b) Overturning failure. 
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By combining Eqs. (7), (9), (13) and (14), the 
critical velocity and boulder diameter of the debris 
flow can be calculated when the ultimate bending 
moment of the stem (Mu) is equal to the total anti-
overturning moment: 

4
3

3

32
2 2

3

16
4 tan cos tan

3

4 cos tan

1 '
sin

2 8 2 '

ϕ ϕ ϕρ ψ ϕ
π

ϕρ ψ ϕ

ρπαρ θ

+ +

+

= +

f
f t f s

f d

b
d

r
r c m gr g

r hg

EDvh dv h d
h

(15)

3    Results and Discussions 

Damage conditions to trees in a debris flow were 
affected by not only their size but also the debris-flow 
characteristics. To calculate and analyze the failure 
models of trees during debris flow and the application 
of forest mitigation measures, we investigated the 
dispersing forest zone at Xiajijiehaizi Gully, 
Jiuzhaigou Valley, Sichuan Province, China. Trees of 
different ages and sizes respond differently to debris 
flows. According to the data obtained from previous 
research and field investigations, we selected pine, the 
dominant tree species in the dispersing forest zone, as 
the prototype to simulate real trees. We built three 
tree models to investigate the failure modes of trees of 
different sizes (Bartelt and Stockli 2001; Peltola and 
Kellomäki 1993; Peltola et al. 1999). The parameters 
are shown in Table 1. The critical velocity and boulder 
size were calculated for dilute (1500 kg/m3) and 
viscous (2000 kg/m3) debris flows. The empirical 
pressure coefficient α values are inconsistent in 
different circumstances (He et al. 2016; Poudyal et al. 
2019; Wang et al. 2018). In this paper, considering 
the form factors of the tree, we utilize the α of 1.0 
(Poudyal et al. 2019), the boulder density ρb of 2400 
kg/m3, and the slope angle ψ of 30°. A debris flow 
event in Xiajijiehaizi Gully on 21 June 2019 was 
selected to analyze the model. 

3.1 Critical debris-flow velocity and boulder 
diameter for stem breakage 

We used Eq. (8) to figure out the critical velocity 
and boulder diameter of debris flows to initiate tree 
stem breakage for different tree sizes (models A, B, 
and C) and flow depths (0.5 m, 1 m, 1.5 m, and 2 m). 

The failure curves of the diluted debris flows plot 
above those of the viscous debris flows (Fig. 3). When 
there are large boulders in the debris flow, the trend 
in the failure curve of the viscous debris flow is 
similar to the failure curve of the dilute debris flow. 
However, regardless of the changes in tree size and 
flow depth, the viscous debris flows are more likely to 
cause stem breakage than the dilute debris flows. 
Stem breakage is mainly affected by the boulder size 
when the flow velocity is low and the boulder size is 
large. When the flow velocity is high and the boulder 
size is large, stem breakage is mainly controlled by the 
debris-flow density. 

The stem breakage curves increase with the size 
of the trees, and the ability of trees to resist stem 
breakage in debris-flow hazards increase with tree 
size (Fig. 3). When the debris flows do not contain 
large boulders, the critical velocity of model A, B, and 
C is 8.5-9.8 m/s, 11.2-12.8 m/s and 13.8-15.9 m/s, 
respectively; when the debris flows include the largest 
boulder size at the same flow depths, the critical 
velocities are reduced to 1.2-1.9 m/s (Fig. 3a). 
Additionally, when the debris flows do not contain 
large boulders, the critical velocities for the flow 
depths of 0.5 m, 1.5 m, and 2 m are 22.3-25.7 m/s, 
7.4-8.6 m/s and 5.6-6.4 m/s, respectively; when the 
debris flows include the largest boulder size at the 
same flow depths, the critical velocities are reduced to 
0.8-3.1 m/s (Fig. 3b). 

3.2 Critical debris-flow velocity and boulder 
diameter for overturning 

We used Eq. (15) to figure out the critical velocity 
and boulder diameter of debris flows to initiate tree 
overturning for different tree sizes (models A, B, and 
C) and different flow depths (0.5 m, 1 m, 1.5 m, and       
2 m). 

Table 1 Tree characteristics of different tree sizes in 
three models (Bartelt 2001; Peltola 1993, 1999). 

Parameters A B C
Stem base diameter d (m) 0.158 0.208 0.258
Tree weight mt (kg) 127 282 524
Root failure radius rf (m) 0.93 1.16 1.38
Modulus of elasticity E
(MOE) (MPa) 

7000 7000 7000 

Modulus of rupture σ
(MOR) (MPa) 39 39 39 

Soil density ρs (kg/m3) 1500 1500 1500
Internal friction angle φ (°) 30 30 30
Soil cohesion c (kPa) 5 5 5
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Fig. 4 compares the overturning failure curves of 
the viscous debris flows and the dilute debris flows at 
a flow depth of 1 m. When the boulder diameter is 
larger than 0.245 m, the viscous debris-flow damage 
curves are plotted above the diluted flow damage 
curves. Or else, the damage curves for the viscous 
debris flows are plotted below those for the diluted 
debris flows, which reveals that 0.245 m is the critical 
particle size when the flow depth is 1 m. If the boulder 
size is greater than 0.245 m, the cause of overturning 
is the impact force of the boulder, otherwise, 
overturning is mainly affected by the dynamic 
pressure. For different debris-flow depths, the critical 
boulder diameter increases with the flow depth: the 
critical boulder diameters are 0.154 m, 0.32 m, and 
0.388 m at flow depths of 0.5 m, 1.5 m, and 2 m, 
respectively. 

The overturning curves increase with the size of 

the trees, and the ability of trees to resist overturning 
during debris flows increase with tree size (Fig. 4). 
When the debris flow does not contain large boulders, 
the critical velocities of models A, B, and C are 12-12.9 
m/s, 14.9-16.1 m/s and 17.8-19.2 m/s, respectively; 
when the debris flows include the largest boulder size 
at the same flow depth, the critical velocities are 
reduced to 2-3.1 m/s (Fig. 4a). When the debris flows 
do not contain large boulders, the critical velocities 
for flow depths of 0.5 m, 1.5 m, and 2 m are 25.8-28.4 
m/s, 11.2-11.8 m/s and 9.2-9.6 m/s respectively; when 
the debris flows include the largest boulder size at the 
same flow depths, the critical velocities are reduced to 
1.7-4.1 m/s (Fig. 4b). 

3.3 Analysis of application conditions 

The calculation and analysis of the impact failure 

   
Fig. 3 Critical debris-flow velocity and maximum boulder size for tree stem breakage. (a) Stem breakage in different 
tree models (flow depth h=1 m, models A, B, and C). (b) Stem breakage under different flow depth (model B, flow 
depth h=0.5 m, 1 m, 1.5 m, and 2 m). 

     
Fig. 4 Critical debris-flow velocity and maximum boulder size for tree overturning. (a) Overturning in different trees 
model (flow depth h=1 m, models A, B, and C). (b) Overturning under different flow depth (model B, flow depth h=0.5 
m, 1 m, 1.5 m, and 2 m). 
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modes and critical conditions of trees during the 
debris flows revealed that a tree’s anti-destructive 
ability increases with the stem base diameter. The 
results show that the stem breakage curves plot below 
those of the overturning curves, which suggested that 
trees are more prone to stem breakage than 
overturning, which is also consistent with previous 
research (Bartelt and Stockli 2001; Peltola et al. 1999). 
The failure mode of trees is affected by the debris-flow 
density, but the debris-flow density is substantially 
less influential than the flow depth and boulder size. 

According to the analysis results of the models, 
trees can withstand the debris-flow hazard at limited 
scales. Debris-flow hazards mitigation should fully 
utilize the hazard mitigation characteristics of both 
forests and geotechnical engineering. Geotechnical 
engineering, as a first step toward weakening the 
magnitude and intensity of debris-flow hazards, will 
also help to change the debris-flow dynamic 
conditions that act on a forest, which protects and 
improves the site conditions of a forest. Forests 
reduce the occurrence of debris-flow activities via 
their ecological functions including soil reinforcement 
(Vergani et al. 2017; Waldron 1976; Waldron and 
Dakessian 1981), soil erosion resistance (Li et al. 2017; 
Vannoppen et al. 2015), and hydrology adjustment 
(Chirico et al. 2013; Vannoppen et al. 2016). Based on 
our results, the following forest application conditions 
combined with geotechnical engineering are proposed:  

Forest measures such as water conservation 
forests and slope shelter forests that are utilized to 
protect slopes, should be matched with diversion 
dikes and embankments or check dams. The former 
measures can change the flow path, weaken the 
debris-flow energy, and reduce velocity and depth of 
debris flow, and weakens the impact force of the 
debris flow on the trees to reduce trees failure. The 
latter measures can raise the erosion datum, intercept 
solid matter and create more gentle slopes, restrain 
headward erosion and limit the activation of debris 
flow substance sources, which is beneficial for tree 
growth. 

Forest measures, such as gully head control 
forests, gully bank protection forests, and gully 
bottom dispersing forests, should be matched with 
geotechnical engineering to intercept solid matter, 
such as flexible barriers, beam dam, grid dams, silt 
dams, pile structures, or matched with structures that 
dissipate energy structures, such as the step-pool 
dissipation structure. The former measures can 

decrease the solid matter in the debris flow by 
separating water and particles, which reduces the 
average particle size and weakens the impact of the 
debris flow. The latter measures increase the 
roughness of the gully bed and change the flow 
pattern, which effectively dissipates the debris-flow 
energy. Adjusting the flow velocity and flow depth, 
reduces the severity of the debris flow. 

3.4 Application of the models to evaluate 
debris-flow hazard in Xiajijiehaizi Gully  

Xiajijiehaizi Gully, with gully mouth coordinates 
of 103°55'10" E, 33°07'22" N, is located in Jiuzhaigou 
Valley, Sichuan Province, China. The watershed 
covers an area of 1.87 km2, and the main channel is 
2.36 km long. The upstream gully is funnel-shaped, 
and the gully mouth is a large old debris flow fan on 
which mixed forest of pine, birch, oak and fir grows. 
Three dispersing check dams and two silting belts are 
arranged in the gully, and part of the debris flow 
channelized enters the dispersing forest zone (Fig. 5). 

On 21 June 2019, a destructive debris flow was 
triggered in Xiajijiehaizi Gully, and the gully mouth 
after the hazard is shown in Fig. 6a. The flow path was 
identified, and some trees along the path were 

 
Fig. 5 Full view of Xiajijiehaizi Gully and 
comprehensive hazard reduction measures. 
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destroyed. Field investigations have shown that both 
stem breakage and overturning failure occurred, but 
some trees in the flow path were not damaged. The 
stem base diameter at the mouth of the Xiajijiehaizi 
Gully generally ranged from 0.1-0.3 m, as determined 
during the field investigation, therefore, model A and 
model C were employed to calculate the critical 
boulder diameter. The debris-flow density was 
measured to be 1900 kg/m3, with most boulder 
diameters less than 0.3 m, only a few boulder 
diameters were greater than 1 m, and the largest 
boulder diameter was 2.1 m (Fig. 6c). The slope angle 
of Xiajijiehaizi Gully is 15°. We measured a flow depth 
of 0.65 m from mud marks on the trees. We 
calculated the debris-flow velocity to be 3.9 m/s by 
using the Manning formula in this event (Gong et al. 
2020) and substituted the relevant parameters into 
Eqs. (6) and (12) to calculate the critical boulder 
diameter. The results show that boulder diameters in 
the range of 0.37-0.53 m break the tree stems, while 
boulders with diameters in the range of 0.54 to 0.69 
m cause overturning. 

It can be seen that the critical size of a boulder 
that is required to break a tree stem is smaller than 
that required to overturn a tree. The critical boulder 
size that is capable of damaging trees is larger than 
most boulders in debris flows. This finding indicates 
that trees will not be destroyed when the boulders 
that come into contact with the trees are not large 
enough. However, several large boulders that may 
cause tree failure were transported during this debris 
flow (Fig. 6c). The failure of a tree is also affected by 
the probability that it is hit by a large boulder (Fidej et 
al. 2015; Moos et al. 2018). Wood jams were observed 
in the dispersing forest zone, which can enhance the 
impact of debris flows and make trees more 
vulnerable to destruction (Schmocker and Weitbrecht 
2013; Shrestha et al. 2011). Since the properties of 
natural trees are not as uniform as the model assumes, 
the defects and differences within trees will also affect 
the failure mode and corresponding debris-flow 
critical characteristics (Zhu et al. 2015). These 
uncertainties also explain why some of the trees on 
the flow path were damaged, while other trees 
remained intact. The field investigation indicated that 
both stem breakage and overturning occurred; 
however, the models did not consider the effects of 
root reinforcement and soil water content changes on 
the properties of the soil, or soil fragmentation 
disintegration, root abruption or slip out from the soil 

(Pollen and Natasha 2007). These models may also 
overestimate the resistance of tree overturning. 

The calculated results of the models cannot 
exactly predict the actual situation, because of the 
previously mentioned limitations. However, the 
models can explain the resistance capacity and 
destruction situation of trees in dispersing forest 
zones. The limitations of the models can be 
considered to better enhance the simulation results 
and computing requirements. This work will further 
improve our understanding of forest measures to 
mitigate debris-flow hazards. 

4    Conclusion  

From information collected during field 
investigations and the presented model results, we 
summarized the impact failure models of trees into 
stem breakage and overturning, and analyzed the 
failure modes of a single tree in debris flows based on 
mechanical analysis. The main critical characteristic 
parameters of debris flow (density, velocity, flow 
depth, and boulder size) were calculated for the case 
of tree failure for different tree sizes (stem base 
diameter, tree weight, and root failure radius). The 
following observations were made from the models 
adopted in this study: (1) The change in boulder size, 

 
Fig. 6 Images of a Xiajijiehaizi Gully debris flow on 21 
June 2019. (a) Debris flow path and isolated trees along 
the path. (b) Wood jams on the flow path. (c) Large 
boulder on the flow path.  



J. Mt. Sci. (2021) 18(7): 1874-1885 

 
 

1883

debris-flow depth, velocity and density can affect the 
critical failure conditions of trees, while the influence 
of the debris-flow density is substantially less than 
that of the boulder size, flow depth and flow velocity. 
The critical flow velocity decreases rapidly with an 
increase in flow depth and boulder diameter. (2) 
Trees are more prone to stem breakage than 
overturning. With increases in tree size, a tree’s ability 
to resist stem breakage and overturning increases, but 
tree resistance is limited relative to the destructive 
power of debris flows. (3) In the process of debris-
flow hazard mitigation, implementing appropriate 
geotechnical engineering measures is most important, 
because they change the debris-flow dynamic 
conditions that act on a forest, also, protect and 
improve the site conditions of the forest by adjusting 
the boulder size, flow velocity and flow depth. Thus, 
forests can be effectively and sustainably utilized to 
take advantage of their ecological function, and 
reduce the incorporation of large wood in debris flows 
to prevent more serious events. 

Due to the assumptions of the tree’s failure 
conditions and simplifications of debris-flow impact 

characteristics made in the calculations, these models 
present some limitations. However, the models still 
explain the impact failure of trees in dispersing forest 
zones, which improves our understanding of 
sustainable forest bioengineering to mitigate debris-
flow hazards. Analyzing and calculating the critical 
conditions of a single tree failure can provide 
references for the design of forest measures, in 
collaboration with geotechnical engineering measures, 
for debris-flow hazard mitigation.  
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