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Abstract: Characterizing soil particle-size 
distribution is a key measure towards soil property. 
The purpose of this study was to evaluate the 
multifractal characteristics of soil particle-size 
distribution among different land-use from a purple 
soil catchment and to generalize the spatial variation 
trend of multifractal parameters across the catchment. 
A total of 84 soil samples were collected from four 
kinds of land use patterns (dry land, orchard, paddy, 

and forest) in an agricultural catchment in the Three 
Gorges Reservoir Region, China. The multifractal 
analysis method was applied to quantitatively 
characterize the soil particle size distribution. Six soil 
particle size distribution (PSD) multifractal 
parameters (D(0), D(1), D(2), (q), f[(q)], α(0)) 
were computed. Additionally, a geostatistical analysis 
was employed to reveal the spatial differentiation and 
map the spatial distribution of these parameters. 
Evident multifractal characteristics were found. The 
trend of generalized dimension spectrum of four land 
use patterns was basically consistent with the range of 
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0.8 to 2.0. However, orchard showed the largest 
monotonic decline, while the forest demonstrated the 
smallest decrease. D(0) of the four land use patterns 
were ranked as: dry land < orchard < forest < paddy, 
the order of D(1) was: dry land < paddy < orchard < 
forest, D(2) presented a rand-size relationship as dry 
land < forest < paddy < orchard. Furthermore, all 
land-use patterns presented as Δf[α(q)] < 0. The 
rand-size relationship of α(0) was same as D(0). The 
best-fitting model for D(0), D(1) , D(2) and Δf[α(q)] 
was spherical model, for Δα(q) was gaussian model, 
and for α(0) was exponential model with structure 
variance ratio was 1.03% , 49.83%, 0.84%, 1.48%, 
22.20% and 10.60%, respectively. The results 
showed that soil particles of each land use pattern 
were distributed unevenly. The multifractal 
parameters under different land use have 
significant differences, except for Δα(q). 
Differences in the composition of soil particles lead 
to differences in the multifractal properties even 
though they belong to the same soil texture. 
Farming behavior may refine particles and enhance 
the heterogeneity of soil particle distribution. Our 
results provide an effective reference for 
quantifying the impact of human activities on soil 
system in the Three Gorges Reservoir region. 
 
Keywords: Land use patterns; Purple soil; 
Multifractal characteristics; Particle size distribution; 
Geostatistics; Spatial variability 

1     Introduction  

Particle size distribution (PSD) is one of the 
essential properties used to characterize soil, which has 
obvious influence on the physical properties of soil 
such as hydraulic characteristics, soil fertility and soil 
erosion (Giménez et al. 1997; Huang and Zhang 2005; 
Montero 2005). Some natural phenomena and 
ecological processes could be affected by land use. 
Revealing the characteristics of soil PSD variation is an 
important part in the study of land use and 
management activities. In the areas with serious water 
and soil loss, fine particulates along with nutrients in 
the soil are liable to be eroded by water, and the 
blocking effect of different land use types on soil 
erosion is different (Martínez-Casasnovas and 
Sánchez-Bosch 2000; Basic et al. 2004). In this sense, 
the characteristics of soil PSD can reflect the impact of 
land use on erosion. What’s more, some studies have 
linked the multifractal characteristics with soil nutrient 

content to try to reveal the relationship between the 
multifractal characteristics and soil fertility and soil 
quality. For example, Sun et al. (2016) published a 
result that D(1) and D(2) were strongly positively 
correlated with soil organic carbon(SOC) and total 
nitrogen(TN) contents in the surface layers on the 
Loess Plateau of China. Soil PSD is still of great 
importance to soil water movement and soil solute 
migration. Hu et al. (2011) conducted an experiment 
about the soil PSD properties and their relationship 
with soil moisture and soil salinity in the mulched drip 
irrigated cotton fields in Xinjiang of China, suggesting 
that the mulched drip irrigation had a significant 
impact on the distribution of the soil salt. 

The characteristics of PSD described as the 
combination of clay, silt and sand, is usually known as 
the texture class. A textural analysis is widely 
considered to be helpful in making decisions about 
soil conservation, productivity, and soil health. Soil 
samples with quite different proportions of clay, silt, 
and sand content might belong to a same soil texture 
(Filgueira et al. 2006). However, particle fractions 
(clay, silt, sand) do not provide enough information 
on soil PSD. 

A detailed analysis of PSD is required to 
characterize soil properties. Soil PSD displays a fractal 
behavior (Tyler and Wheatcraft 1992; Taguas et al. 
1999; Montero 2005; Prosperini and Perugini 2008; 
Li et al. 2011). Various studies revealed that soil 
texture can be described effectively by the fractal 
theory and analysis (Bartoli et al. 1991; Filgueira et al. 
2006). Therefore, the fractal geometry was employed 
to explore the PSD of soil. Different fractal 
dimensions are obtained by using different fractal 
models. Generally, single fractal dimension and 
multiple fractal dimensions are widely used to 
describe soil PSD (Taguas et al. 1999; Montero 2005; 
De et al. 2008; Peng et al. 2014; Zhou et al. 2016; Qi 
et al. 2018; Wang et al. 2018). For example, Xu et al. 
(2013) studied the fractal characteristics of soil 
particle distribution and its relationship with soil TN 
distribution in the middle Dan River source area. 
Rodríguez-Lado and Lado (2017) analyzed the 
relationship between soil formation factors and PSD 
in the topsoil of Galicia by multifractal method. Single 
fractal can only depict characteristics of PSD in a 
holistic and average way, and might not always be 
able to evaluate the internal geometric differences, 
while multiple fractal theory could capture the 
intrinsic variability of the measure, and describe the 
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local heterogeneity and non-uniformity of soil PSD 
(Posadas et al. 2001; Paz-Ferreiro et al. 2010). 
Multifractal analysis distinguishes the entire volume 
or mass distribution of nonuniform density and 
represents it as a multifractal spectrum with typical 
shapes. Thus, in the case of soil texture, the single 
fractal analysis ignores the non-uniform behavior of 
PSD, while the multifractal analysis could take 
account of the changes of particle-size density, that is, 
the fact that some components are more frequent 
than others (Paz-Ferreiro et al. 2010). Thus, the 
multifractal technique is superior as an alternative to 
single fractal dimension (Grout et al. 1998). 

Normally, geostatistics with a precise evaluation 
of spatial variation by considering the self-correlation 
and random variation components, is considered as 
an effective tool to quantify the spatial variation of 
various natural phenomena (Oliver 1987; Long et al. 
2014). Hence, it is highly applied in spatial variation 
of soil properties (Trangmar et al. 1986; Cambardella 
et al. 1994; Tripathi et al. 2015), especially in soil PSD 
(Rosemary et al. 2017). Most of these studies only 
show the spatial distribution of single clay, silt or sand 
content, and cannot quantify the overall spatial 
variability of soil PSD. Consequently, the combination 
of geostatistics and multifractal is an anticipating 
approach to describe the subtle differences and 
variation trends comprehensively (Wang et al. 2018; 
Wang et al. 2019). 

In recent years, many scholars have studied the 
effects of different soil types (Posadas et al. 2001; 
Martı et al. 2002; Montero 2005; Wang et al. 2019), 
land use patterns (Rodríguez-Lado and Lado 2017; Qi 
et al. 2018) and land restoration (Miranda et al. 2006) 
on the fractal characteristics of soil, to explore the 
relationship between fractal properties and soil 
characteristics. However, there are few studies on the 
multifractal properties of different land use patterns 
in purple soil areas, especially in the Three Gorges 
Reservoir area. Furthermore, it is essential to realize 
the basic spatial features of soil PSD for analyzing the 
spatial variation characteristics of soil nutrients, 
managing soil fertility, preventing and controlling soil 
erosion, and monitoring water quality in reservoir 
areas. Based on the methods of laser diffraction 
measurement, multifractal theory and geostatistical 
analysis, this study ascertained the multifractal 
features of the topsoil PSD, and revealed the spatial 
distribution of the typical agricultural catchment in 
this region.  

2    Materials and Methods 

2.1 Study area 

The study area is located in the middle reaches of 
the Three Gorges Reservoir area (Fig. 1), named 
Shipanqiu in Zhong County, Chongqing municipality 
of China (107°3'~108°14'E, 30°03'~30°35'N).  The 
bedrock is highly made of Jurassic Shaximiao 
Formation (J2s) sandstone, siltstone, and mudstone. 
The climate of the central region of the Three Gorge 
Reservoir area is a subtropical southeast monsoon 
with distinct seasons, abundant rainfall and sufficient 
sunshine. The annual average temperature of the 
study area is 19.2℃ with frost-free period of 320 days 
while the annual average rainfall is 1150 mm. 
However, the precipitation distributions vary 
unevenly with the seasons, where 70% fall in the rainy 
season (from April to September). The neutral purple 
soil is formed by a rapid weathering of sandstone 
siltstone and mudstone of Shaximiao Formation. The 
most common land use of the area includes 
residential areas (villages and market towns), 
agricultural land (dry land and paddy), orchards, 
forest, etc. The main crops are rice corn, potatoes, 
citrus, vegetables and so on. 

2.2 Soil sampling  

This study focused on the multifractal 
characteristics of topsoil at different land use patterns. 
In addition, 0-2 cm is the main layer of soil erosion. 
Therefore, the samples were collected on the topsoil 
(0-2 cm) of each land-use pattern. 32 samples were 
collected from dry land, 25 samples from paddy, 15 
samples from the orchard and 12 samples from forest 
land, respectively. The terrain of the study area is 
fragmented, therefore, the number of samples 
depended on the area of land use and the actual 
distribution. Each soil sample is a mixed sample 
collected from multiple points (n=10) with a stainless-
steel shovel to increase the representativeness of the 
sample, and the samples basically covered the whole 
catchment. However, the hydro-fluctuation belt in the 
south of the catchment is not included in the 
sampling range because it is affected by the periodic 
fluctuation of water level in the reservoir area. The 
sampling points followed the principle of random 
sampling. Refer to Fig. 1 for the distribution of 
sampling points.  
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2.3 Laboratory analyses 

All samples were air-dried in the laboratory at 
room temperature followed by manual removal of 
dead leaves, plant roots, and coarse gravel. Further 
handling of samples involved sifting through a 2 mm 
soil sieve and then placing them in a labeled zip-top 
bag at room temperature. Soil grain size distribution 
was analyzed by a laser granulometer known as 
Malvern Mastersizer 2000 (Malvern Instruments, 
Malvern, England). The pre-treatment was done by 
adding 10% hydrogen peroxide (H2O2) and 10% 
hydrochloric acid (HCl) to remove organic matter. In 
addition, 10 mL Calgon ((NaPO3)6) with a 
concentration of 0.05 mol L-1 was added and then 
stirred to fully separate the primary soil particles. 
Before laser diffraction analysis, ultrasonic dispersion 
for one minute was applied to samples. 

2.4 Multifractal analysis of soil grain size 
distribution 

The application principle of multi-fractal analysis 
in soil PSD is as follows: 

The first step of the method is to subdivision of 
the interval. Based on the successive partitions of the 
interval I in dyadic scaling down and the given 
diameter L, dyadic partitions in k stages (k=1, 2, 3,… ) 
generate a number N(ε)=2k of cells with equal size of 
ε= L×2−k to cover the entire interval I (Kravchenko et 
al. 1999). In present study, the first cell range of PSD 
is I1= [0.02, 0.024], and the last cell is I64= [1670.725, 
2000]. As a result, the interval I = [0.02, 2000] (μm) 
measured by the laser particle size analyzer was 
divided into 64 cell intervals Ii= [Φi, Φi+1], i=1, 2, …, 
64, with the log(Φi/Φi+1) as a constant. After a 
logarithmic transformation of φl=log (φl /φ1), for l=1, 

 
Fig. 1 (a) Elevation map of the Three Gorges Reservoir Region revealing Zhong County. (b) Elevation map of Zhong 
County showing Shipanqiu catchment, the study area. (c) Distribution of sampling sites in the study area. 
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2, …, 65, a new dimensionless interval is formed L= [0, 
5] and divided into 64 subintervals of equal size, with 
Li=[φi,φi+1], i=1, 2, …, 64. A number N(ε)=2k of cells is 
equal to size ε=5×2−k for k is set up ranging from 1 to 
6 (i.e., ε=2.5, 1.25, 0.625, 0.3125, 0.15625 and 
0.078125) (Montero 2005). 

Calculation of probability function is the second 
step. In the analysis of soil PSD, the measure p of each 
size sub-interval means the relative volume of soil 
particles at the characteristic size within the sub-
interval. pi (ε) is the probability density of soil PSD 
within each subinterval. Construct a partition 
function group as follows: 

																																				ܺሺݍ, ሻߝ ൌ ෍ ሻ௤ߝ௜ሺ݌
ேሺఌሻ

௜ୀଵ

																											ሺ1ሻ 

where q is a real number. 
The next step is to calculate multifractal 

parameters. Generalized dimensions (Rényi 
dimensions) are expressed as Eqs. (2) and (3) (Rényi 
1955). 

ሻݍሺܦ									 ൌ limఌ→଴
ଵ

௤ିଵ

୪୥ቂ∑ ௣೔ሺఌሻ
೜ಿሺഄሻ

೔సభ ቃ

୪୥ఌ
, for	ݍ ് 1														ሺ2ሻ   

ሻݍሺܦ									 ൌ limఌ→଴
∑ ௣೔ሺఌሻ୪୥௣೔ሺఌሻ
ಿሺഄሻ
೔సభ

୪୥ఌ
, for	ݍ ൌ 1																	ሺ3ሻ   

When q=0, D(q)=D(0) is the capacity dimension. 
D(0) describes the width of soil PSD. The larger D(0) 
is, the wider distribution range of soil particle size is. 
Therefore, the most uneven case is D(0)=1, since it 
has the most abundant distribution of soil particles, 
while the most uniform distribution follows D(0)=0. 
When q=1, D(q)= D(1) is the information dimension. 
D(1) represents the concentration degree of PSD 
measure. The larger D(1) is, the more discrete the soil 
PSD is. D(q) = D(2) is the correlation dimension 
where D(2) alone represents the symmetrical level of 
measuring distance of soil PSD. The larger D(2) is, the 
more symmetrical the soil PSD is. D(1) and D(0) are 
the most frequently used multifractal parameters.  

In general, the multifractal spectrum is a function 
of q, and the curve of the function conforms to 
sigmoidal shape (Montero 2005). Theoretically, q 
continuously varies between positive and negative 
infinity. However, in practice, the variation range of q 
is limited. In this study, the multifractal dimensions 
spectrum D(q) was plotted within the range of −10≤q
≤10 with an increment of 1 by Eqs. (2) and (3). When 
D(q) tends to be uniformly distributed, the 
multifractal dimensions spectrum curve is 
approximate the horizontal line, which means that 

PSD depicts a uniform scaling characteristics. On the 
other hand, When D(q) conforms to the typical non-
increasing s-shaped curve of theoretical multi-fractal 
measure, the curves have all sorts of D(q) values, 
manifesting scaling properties of PSD varies (Montero 
2005). 

The multifractal singularity index α(q) and 
spectrum function f [α(q)] of soil PSD are computed 
by Eqs. (4) and (5), severally: 

ሻݍሺߙ											 ൌ limఌ→଴
∑ ఓ೔ሺ௤,ఌሻ୪୥௣೔ሺఌሻ
ಿሺഄሻ
೔సభ

୪୥ఌ
																																ሺ4ሻ   

												݂ሾߙሺݍሻሿ ൌ limఌ→଴
∑ ఓ೔ሺ௤,ఌሻ୪୥ఓ೔ሺ௤,ఌሻ
ಿሺഄሻ
೔సభ

୪୥ఌ
																							ሺ5ሻ   

where, the ߤ௜ሺݍ,  :ሻ is defined asߝ

,ݍ௜ሺߤ																											 ሻߝ ൌ
ሻ௤ߝ௜ሺ݌

∑ ሻ௤ߝ௜ሺ݌
ேሺఌሻ
௜ୀଵ

																																ሺ6ሻ 

The width and symmetry of multifractal 
spectrum are expressed as =α(q)max−α(q)min and  
f()=fα(q)max−fα(q)min, respectively. The  
represents the heterogeneity of soil PSD over the 
whole fractal structure and f indicates the feature of 
the multifractal spectrum shape and reveals the 
asymmetry of soil PSD. The local average singularity 
α(0) is the average singular strength of the whole 
multifractal structure, which is inversely proportional 
to the local density on the fractal structure of particle 
size. The greater local density of soil PSD is, the 
smaller α(0) is. 

The asymmetrical f [α(q)] spectra is characterized as 
a right-skewed spectrum when f > 0, as a left-
skewed spectrum when f <0 while asymmetric shape 
appears when f =0. Indeed, the more right-skewed 
multifractal spectrum, the more significant impact of 
low-value information of the variable on the soil PSD. 
Conversely, the high value information has a more 
significant impact on the soil PSD (Guan et al. 2007; 
Wang et al. 2018). 

2.5 Geostatistical analysis of soil PSD 
multifractal properties 

The key of geostatistics method is to explore the 
spatial variability of PSD multifractal parameters by 
using the semi-variogram, and determine the optimal 
input parameters for Kriging interpolation. 

In this study, the semi-variogram of each 
multifractal parameters of soil PSD was calculated by 
Eq. (7): 

ሺ݄ሻߛ																	 ൌ ଵ

ଶேሺ௛ሻ
∑ ሾܼሺݔ௜ሻ െ ܼሺݔ௜ ൅ ݄ሻሿଶேሺ௛ሻ
௜ୀଵ 										ሺ7ሻ   

where ߛሺ݄ሻ is the semi-variance of the lag interval h, 
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reflecting the spatial relationship between adjacent 
sampling points. Z(xi) and Z(xi+h) are the measured 
variables for the positions of xi and xi+h, and N(h) is 
the number of pairs spaced by a given distance h. 

The calculation of semi-variograms is 
subsequently followed by selecting one fitting 
theoretical model among Gaussian model (Eq. 8), 
spherical model (Eq. 9) and exponential model (Eq. 
10), which are widely used in soil research. 

The Gaussian semivariogram function is: 

ሺ݄ሻߛ												 ൌ ቊ
0, for	݄ ൌ 0

଴ܥ ൅ ܥ ቂ1 െ expቀെ௛మ

௔మ
ቁቃ , for	݄ ൐ 0

							ሺ8ሻ  

The spherical semivariogram function is: 

ሺ݄ሻߛ																				 ൌ ൝
଴ܥ ൅ ܥ ቂ

ଷ௛

ଶ௔
െ ௛య

ଶ௔య
ቃ , for	݄ ൑ ܽ

଴ܥ ൅ ,ܥ for	݄ ൒ ܽ
														ሺ9ሻ  

The exponential semivariogram function is: 

ሺ݄ሻߛ										 ൌ ൝
0, for	݄ ൌ 0

଴ܥ ൅ ܥ ൤1 െ exp൬െ
݄
ܽ
൰൨ , for	݄ ൐ 0

		ሺ10ሻ 

where C0 is the nugget effect, C0+C is the sill or total 
variance, and a is the range of spatial dependence. 

Semi-variograms can analyze and explain the 
spatial distribution and structural characteristics of 
the regionalized variables, at the same time it 
provides relevant information for kriging spatial 
interpolation. Variables including the sill (C0+C), the 
nugget (C0) and the spatial structure ratio [C0/(C0+C)] 
were used to evaluate the spatial dependence of soil 
PSD multifractal parameters. As the lag distance 
increases, a threshold can be reached to measure 
spatial heterogeneity, if the variogram stabilizes. The 
distance at which the variogram reaches the sill is 
called the range (a). Nugget is defined as the 
variability at a scale smaller than the sampling 
interval and the error of sampling analytical. Spatial 
structure ratio which is the ratio of nugget to sill value 
reflects the degree of spatial auto-correlation. When 
the value of [C0/(C0+C)] is ≤25%, it is deemed to be 
strongly spatial autocorrelation. When [C0/(C0+C)] is 
between 25% and 75%, it is assumed to be moderately 
spatial autocorrelation. Further increase of this ratio 

to where [C0/(C0+C)]>75%, it is considered as a 
weakly spatial autocorrelation (Cambardella et al. 
1994; Wang et al. 2018). 

The Kriging interpolation method, also known as 
spatial topo-interpolation method is based on spatial 
correlation, variogram theory and structural analysis. 
It plays a major role in geostatistics research, 
primarily for unbiased optimal estimation of variables 
in a limited region. Generally, Kriging estimates can 
be calculated by Eq. (11): 
																																ܼሺݔ଴ሻ ൌ ∑ ௜ሻݔ௜ܼሺߣ

௡
௜ୀଵ 																												ሺ11ሻ	  

where Z(x0) is the estimated value of sampling site x0; 
Z(xi) is a given value at location of xi; and ߣ௜ is weight 
coefficient. The magnitude of n depends on the size of 
the moving search window and user definition. 

The geostatistical analysis was performed by 
GS+9.0. The general trend of the data can be revealed 
by the Kriging estimates map accomplished by software 
ArcGIS 10.3 (Esri, Redlands, California, USA). 

3    Results 

3.1 Soil particle fractions of different land use 
patterns 

The soil particle fractions (clay, silt, sand) of 
different land use patterns in the study area were 
presented in Table 1. Median particle size (d50) is an 
important index of soil particle distribution. Normally, 
the median particle size varies according to different 
land use patterns. The maximum median particle size 
for forest land is 52.55µm, which is significantly larger 
than dry land, orchard and paddy. The smallest 
median particle size was found in paddy with 28.62 
µm which is highly different from other land use 
patterns, though orchard exhibited the exception. In 
addition, its clay content was also significantly higher 
than other studied land use patterns. Generally, silt 
accounted for the largest proportions in the 
composition of soil particles for all land use patterns 
with the values ranging from 49.30% to 59.42%, sand 

Table 1 Soil particle fractions of four land use patterns in Shipanqiu catchment, Chongqing municipality of China 

Land use 
patterns Vegetation types 

Median particle 
size d50 (μm) 

Clay (%) 
(<0.002mm) 

Silt (%) 
(0.002-0.05 mm) 

Sand (%) 
(0.05-2 mm) 

Dry land Annual herbs (rape, corn, potato) 37.19±18.69 B 2.04±0.83B 57.38±10.66 A 40.58±11.23B 
Forest Perennial trees (bamboo) 52.55±23.52A 1.91±0.61B 49.30±8.68 B 48.79±8.98 A 
Orchard Small perennial trees (citrus) 33.39±9.75 BC 1.67±0.52 B 58.27±6.66 A 40.06±6.94 B 
Paddy Annual grass (paddy) 28.62±8.68 C 3.16±0.99A 59.42±6.41 A 37.41±6.96 B 

Note: Value in table is mean ± standard deviation. Different uppercase letters in one same column mean significant 
difference (P<0.05) 
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grains were slightly less 
than silt content with the 
proportions ranging from 
37.41% to 48.79%, while the 
percent of clay particles 
were tiny less than 5%, 
respectively. According to 
the USDA soil texture 
classification standard, the 
soil of four land use patterns 
in this study were silty loam 
and sandy loam (Fig. 2).  

3.2 Multifractal 
characteristics  

The multifractal 
analysis can be carried out 
when the logarithmic curves 
of the partition function 
ܺሺݍ,  ሻ and the box scale (ε)ߝ
satisfy a linear relationship. 
Fig. 3 showed the log-log 
curves (for -10 ≤ q ≤10) of 
the partition function	ܺሺݍ,  ሻߝ
and box scale (ε) of a 
random soil sample, with 
coefficient of determination 
between 0.93 and 0.99 
(Table 2). It indicated that 
the soil samples in the study 
area have multifractal 
characteristics. 

According to the multi-
fractal algorithm, the soil 
particle sizes of different 
land use patterns in the 
study area were analyzed. 
Within the range of -10 ≤q
≤ 10, the generalized 
dimension spectrum D(q) of 
PSD was obtained, as illustrated in Fig. 4. The trend of 
generalized dimension spectrums of the four land use 
patterns was basically consistent ranging from 0.8 to 
2.0.  Indeed, they showed a distinct variation across 
negative values of q. When q>0, D(q) highlights the 
property of large probability measure range, which can 
reflect the overall complexity of PSD. Contrary, when 
q<0, D(q) represents the property of small probability 
measure interval, and this reflects the small and 

complex features of PSD fractal structure. In general, 
when q<0, the variation range of D(q) is greater than 
q>0, which indicates that soil particles distributed in 
dense areas of these 4 land use patterns have better 
scaling than those in sparse areas. That is, D(q) is more 
accurate in the region of small probability measure 
than in the region of large probability measure. For all 
land use studied, orchard showed the largest 
monotonic decline, while forest revealed the smallest 

 
Fig. 2 Soil texture classification of Shipanqiu catchment. 

 

 
Fig. 3 Log-log plots of partition functions ܺሺݍ,  ሻ and measurement scales (ε) of soilߝ
particle size distribution. 
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decrease. It signified that the PSD of 
orchard had a stronger nonuniformity, 
while forest presented more evenly.   

 The statistical information of six 
multifractal parameters, which included 
capacity dimensio  n D(0), information 
dimension D(1), the correlation 
dimension D(2), the multifractal 
spectrum width (q), the multifractal 
spectrum symmetry f[α(q)], and the 
local average singularity α(0) for 
different land-use  patterns are 
presented in Fig. 5. The median values of 
the vast majority of multifractal 
attributes are approximate their mean 
value, and the median values are less 
sensitive than the mean when the 
number of samples studied is relatively 
small, therefore, the median values were 
selected for further analyses. 

The capacity dimension (D(0)) of the 
four land use patterns are ranked as: dry 
land < orchard < forest < paddy. It 
implies that the width of soil PSD in 
paddy is the widest, which may due to the smallest 
grain size of the soil in the paddy. Contrary, dry land 
has the narrowest scope of soil PSD. The variation 
range of (D(0)) were 0.803~0.870, 0.838~0.872, 
0.838~0.923, 0.816~0.888, respectively, corresponding 
to dry land, orchard, paddy, forest. Our results for the 
information dimension (D(1)) showed that dry land 
has the lowest value, while forest land has the highest 
value. It demonstrated that the PSD of forest is more 
discrete than other three kinds of land use patterns 
whereas the PSD for dry land is highly concentrated. 

Furthermore, the PSD of orchard and paddy showed a 
similar dispersion. The value range of (D(1)) of dry 
land, orchard, paddy, and forest were 0.816~0.860, 
0.839~0.872, 0.842~0.926, 0.834~0.878, severally. 
The correlation dimension (D(2)) presented a rand-
size relationship as dry land < forest < paddy < 
orchard. As a result, the results for this parameter 
indicated that the PSD of orchard is the most 
symmetrical, followed by paddy and forest, finally dry 
land found to be the least symmetrical land use. 
Therefore, it is asymmetrical for the PSD in four kinds 
of land use patterns.  

Different from the generalized dimension 
spectrum, multifractal singular spectrum function 
characterizes part features of fractal structure. In this 
study, the multifractal spectrum curve drawn 
according to α(q) and f[α(q)] was a unimodal function 
with a high coincidence degree and a left-skewed 
shape (Fig. 6). It indicated that coarse particles of 
purple soil dominated the distribution of soil size, and 
the degree of variability was greater than that of fine 
particles. The left branch of the multifractal singular 
spectral function of PSD in the four land use patterns 
was similar, while the right branch showed some 
differences in the width and the symmetry of 
spectrum. The spectral width Δα(q) may be related to 

Table 2 Log–log fitting of the partition function [lg	ܺሺݍ,  ሻ] and boxߝ
scale (lg) of a random soil sample in the interval -10 ≤ q ≤ 10. 

Equation Plot Intercept Slope r R-square  
(COD) 

y = a + bx 

q =-10 14.94 -18.93 -0.96 0.93 
q=-9 13.44 -17.05 -0.96 0.93 
q=-8 11.95 -15.16 -0.96 0.93 
q=-7 10.46 -13.27 -0.96 0.93 
q=-6 8.97 -11.39 -0.97 0.93 
q=-5 7.48 -9.50 -0.97 0.93 
q=-4 5.99 -7.62 -0.97 0.94 
q=-3 4.51 -5.73 -0.97 0.94 
q=-2 3.04 -3.86 -0.97 0.95 
q=-1 1.65 -2.09 -0.99 0.97 
q=0 0.58 -0.86 -1.00 0.99 
q=1 -0.46 0.82 0.98 0.97 
q=2 -0.40 0.80 0.98 0.96 
q=3 -0.75 1.58 0.98 0.96 
q=4 -1.06 2.36 0.98 0.96 
q=5 -1.37 3.12 0.98 0.96 
q=6 -1.67 3.88 0.98 0.96 
q=7 -1.96 4.64 0.98 0.95 
q=8 -2.25 5.39 0.98 0.95 
q=9 -2.54 6.14 0.98 0.95 
q=10 -2.83 6.89 0.98 0.95 

Note: r =Pearson correlation coefficient; COD=Coefficient of 
determination. 

 
Fig. 4 Generalized dimension spectrums of particle size 
distribution in different land use patterns of Shipanqiu 
catchment. 
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the heterogeneity (Paz-Ferreiro et al. 2010; San José 
Martínez et al. 2010). However, the Δα(q) values of 
dry land, orchard, and paddy were quite similar, whic  
h concentrated between 1.0 and 1.3, indicating a 
similar degree of heterogeneity for the four kinds of 
land use  patterns studied. In addition, Δf[α(q)]<0 in 
all land use  patterns revealed that larger volume 
fraction of particles in the dominant position (Paz-
Ferreiro et al. 2010; San José Martínez et al. 2010). 
The rand-size relationship of local average singularity 
(α(0)) was in the order as: dry land< 

orchard<forest<paddy. The local density of soil 
particles in dry land was the highest, followed by 
orchards and forest, and paddy field was the smallest. 

Some parameters were found to be correlated 
(Table 3). Parameter pairs with significant positive 
correlation coefficients were D(0) and D(1) (0.669), D(0) 
and D(2)(0.470), D(0) and Δα(q) (0.289), D(0) and α(0) 
(0.777), D(1) and D(2) (0.819), Δα(q) and α(0) (0.624), 
while the significant negative correlations appeared in 
D(2) and Δf[α(q)] (-0.372), Δα(q) and Δf[α(q)] (-
0.344), Δf[α(q)] and α(0) (-0.248). 

 
Fig. 5 Statistics of six multifractal parameters in four kinds of land-use patterns of Shipanqiu catchment. The boxplot 
with different letters in each multifractal parameter indicates significant difference at P<0.05. The upper and lower 
points outside the boxplot represent the maximum and minimum values, the points inside the boxplot represent the 
average value, and the box from up to down represent the upper quartile, median and lower quartile respectively. 
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3.3 Relationship between multifractal 
parameters and soil particle composition 

According to the Pearson correlation analysis of 
multiple fractal parameters and soil texture (Table 3), 
soil texture and multifractal parameters were in 
varying degrees of correlation. There was a positive 
correlation between clay and D(0)(0.604), clay and 
Δα(q)(0.314),  clay and α(0)(0.742), silt and 
Δα(q)(0.352), silt and α(0) (0.435), sand and 
D(1)(0.251), sand and Δf[α(q)] (0.706). Moreover, a 
significantly negative correlation between clay and 
Δf[α(q)] (-0.350), silt and D(1)(-0.270), silt and 
Δf[α(q)] (-0.710), sand and Δα(q)(-0.365), sand and 
α(0) (-0.487) was found.  

3.4 Geostatistical analysis 

The best-fitting semi-variogram model and 
related parameters of multifractal attributes were 
listed in Table 4. No conversion was conducted to the 
data since no significant trends were found. The 
structure variance ratio ([C0/(C0+C)]) was used to 
estimate the spatial variation degree of parameters. 
The spherical model calculated by semi-variogram 
was applicable to the parameters D(0), D(1), D(2), 
and Δf[α(q)] [C0/(C0+C)] ratios were 1.03% , 49.83%, 
0.84%, and 1.48%, respectively. A gaussian model was 
detected as the appropriate for Δα(q) with a value of 
22.20% for [C0/(C0+C)]. However, the optimal fitting  
model for α(0) was the exponential model, with a 
structure variance ratio of 10.60%. It was apparent 
that the parameters D(0), D(2), Δα(q), Δf[α(q)] and 
α(0) showed a relatively weak spatial variability in the 
experimental site because of their structural variance 
ratio below 25%. Parameter D(1) performed moderate 
variation, since its structural variance ratio is between 25% 
and 75%. It could be noticed that no parameters presented 
a strong spatial variation in the studied catchment. 

The result of spatial variability is a prerequisite 
for drawing kriging graphs of different multifractal 
parameters in PSD. Based on the semi-variogram 
model, the multi-fractal parameters of soil PSD were 
visualized by mapping the spatial distribution of D(0), 
D(1) ,D(2), Δα(q), Δf[α(q)] and α(0) by means of 
ordinary kriging interpolation. The results of 
interpolation for each parameter are displayed in Fig. 
7. Maps of multifractal parameters were drawn at the 
same scale to facilitate comparative analysis. 

The spatial distribution trend varied with 

multifractal parameters. D(0) (Fig. 7 (a))has two hot 
spots. One neared the southwest boundary, and the 
other approached in the southeast of the study area. 
With these two hot spots as the center, the value of 
D(0) decreased in all directions, and the minimum 
value was mainly concentrated in the northeast corner. 
This result may be affected mostly by the pattern of 
land use. The large region of the southwest boundary 
was occupied by forest, the northeastern primarily 
occupied by orchard, and the southeastern was 
mainly filled with paddy and dry land. The terrain of 
the experimental area is broken, paddy fields and dry 
lands crisscross. 

The low value of D(1) (Fig. 7(b)) appeared along 
the northwest to southeast of the research area and 
then increased on both sides, and the high values 
were reached in the northwest corner, along the 
southwest  and eastern (except the northeast and 
southeast corners) of the study area, respectively. The 
high, middle and low value areas were clearly 
demarcated and presented obvious banding 
distribution. The distribution of D(2) (Fig. 7(c)) had 
obvious regional characteristics. Based on the 
distribution, study area was divided into three 
sections, in which the northwestern and southeastern 
were low-value areas, and the large area which 
including the western, northeastern and eastern areas 
was high-value area. Moreover, as for Δα(q) (Fig. 
7(d)), the relative high-value regions distributed in 
the central part and southeast corner of the 
catchment, while the relative low-value regions 
concentrated along western boundary and northwest 
corner. The distribution of Δf[α(q)] (Fig. 7(e)) has a 
hot spot located in the northwestern, and an evident   

 
Fig. 6 Multifractal spectra of soil particle size 
distribution for different land-use patterns of Shipanqiu 
catchment. 
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low-value area appeared in the northeast corner of the 
catchment. In addition, parameter α(0) (Fig. 7(f)) 
showed that the high values were concentrated in 
southeastern regions, while the low values distributed 
in northeastern.  

4    Discussion 

4.1 PSD characteristics 

In terms of the percentage of soil PSD, the silt 
content (49.30%~59.42%) was dominant under 
different land use patterns in the study area, followed 
by sand grains (37.41%~48.79%), with the clay 
content (1.67%~3.16%) being the lowest. Compared 
with forest, the other three patterns of land use 
significantly reduced the contents of sand, and 
significantly increased silt content. The effect of land 
use on clay content was not statistically significant 
except for paddy (Table 1). It indicated that the 
distribution of soil particles in the study area was 
concentrated and non-uniform. As a result, it is 
necessary to conduct multifractal analysis. Purple soil 
is a kind of soil developed from sedimentary rocks, 

which has marked soil coarseness, with an evident soil 
erosion characteristic. The median particle size (d50) 
of four land-use patterns presented a relationship as: 
forest > dry land > orchard > paddy. The soil studied 
was disturbed by human activities for a long time 
except forest. To some extent, this demonstrated that 
long-term tillage had a refining effect on coarse soil 
particles. The composition of soil particles is also 
related to the type of vegetation, besides the soil 
parent material and physiochemical weathering (Qi et 
al. 2018). The growth of plant roots and the 
decomposition of litter would affect the physicochemical 
and biological properties of soil, and then affect the 
composition of soil particles. Annual herbs are main 
crops of dry land, such as canola, corn, potato, and so 
on, with sparse, fine root systems and little surface 
litter. However, the citrus orchard is a mature 
dungarunga with complex root network and affluent 
surface litter. The cementing substances secreted by 
the root effectively facilitate the formation of soil 
aggregates to improve soil fertility, enhance soil 
stability, improve the physical and chemical 
properties of soil, and thus promote the increase of 
fine particulate and the decrease of coarse particle 
content (Posadas et al. 2001; Su et al. 2018).

Table 3 Pearson correlation analysis of soil texture and multiple fractal parameters 

Multifractal 
parameters 

Clay Silt Sand 
Capacity 
dimension 
D(0) 

Entropy 
dimension 
D(1) 

Correlation 
dimension 
D(2) 

Spectral 
width 
Δα(q) 

Symmetry 
degree  
Δ f [α(q)] 

Local average 
singularity 
α(0) 

Clay 1         
Silt 0.512** 1        
Sand -0.586** -0.996** 1       
Capacity 
dimension D(0) 

0.604** 0.042 -0.101 1      

Entropy 
dimension D(1) 

0.037 -0.270* 0.251* 0.669** 1     

Correlation 
dimension D(2) 

0.114 0.183 -0.184 0.470** 0.819** 1    

Spectral width 
Δα(q) 

0.314** 0.352** -0.365** 0.289** -0.049 0.066 1   

Symmetry 
degree Δ f [α(q)] 

-0.350** -0.710** 0.706** 0.015 0.101 -0.372** -0.344** 1  

Local average 
singularity α(0) 

0.742** 0.435** -0.487** 0.777** 0.131 0.158 0.624** -0.248* 1 

Note: ** and * are significant at conference levels of 0.01 and 0.05, respectively. 
 
Table 4 Fitting semivariogram models for multifractal parameters of soil particle-size distribution 

Multifractal 
parameters 

Fitting model Nugget (C0) Sill (C0+C) Structure variance ratio 
[C0/(C0+C), %] 

D(0) Spherical 0.000005 0.000486 1.03 
D(1) Spherical 0.000149 0.000299 49.83 
D(2) Spherical 0.000003 0.000359 0.84 
Δα(q) Gaussian 0.093000 0.418853 22.20 
Δf[α(q)] Spherical  0.000500 0.033700 1.48 
α(0) Exponential  0.000339 0.003198 10.60 
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Fig. 7 Spatial distribution of multifractal parameters of soil particle size distribution in Shipanqiu catchment. 
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4.2 Multifractal parameters 

The multifractal method applied in soil could 
capture more detailed information on soil  PSD and 
reflect the change of soil physical characteristics (Xu 
et al. 2013). The generalized dimension (D(q), as 
shown in Fig. 4) quantifies the statistical properties of 
the fractal measure and quantifies the complexity and 
non-uniformity of the soil PSD fractal structure at 
different levels. The values of generalized dimension 
spectrums of the four land-use patterns ranged from 
0.8 to 2.0. A similar outcome had been presented in 
Qi et al. (2018), ranging from 0.8 to 2.3 for Oak forest 
land, within the scope of 0.7 to 1.9 for terraced 
farmland, 0.7~1.8 for shrub-grass sloping land and 
sloping farmland. Xia et al. (2020) calculated the 
generalized dimension spectrums of four different 
vegetation types: shrub-grass community of Ziziphus 
jujuba var. spinosa-Artemisia mongolica (0.5~2.3), 
shrub-grass community of Periploca sepium Bunge-
Messerschmidia sibirica (0.5~1.6), mixed herbaceous 
community of Artemisia mongolica-Phragmites 
australis (0.5~1.5), and bare land (0.5~1.0). The 
generalized dimensional spectrum of soils disturbed 
by human activities over time may vary more widely 
than that of soils hardly disturbed, such as woodlands 
and shrub lands. Tillage behavior probably enhanced 
the heterogeneity of soil particle distribution. 

Capacity dimension D(0) represents the width 
range of soil PSD. The larger the D(0) is, the wider the 
soil PSD. The range of D(0) under four kinds of land 
use in the research area was 0.803~0.923. Similar 
results have been reported by Martı et al. (2002), 
indicating that the value of (D(0)) varied from 0.83 to 
1.0 of twenty mineral soils. Paz-Ferreiro et al. (2010) 
presented the results ranging from 0.923 to 1.0 for 32 
study PSDs under two tillage treatments and two 
cropping systems. Rodríguez-Lado and Lado (2017) 
found a range of 0.831~0.975 for (D(0)). Moreover, 
Montero (2005) published a narrow range of 
0.95~0.99 of (D(0)). Information dimension D(1) 
measures the concentration of soil PSD, which is 
connected with the degree of soil evolution (Martı et 
al. 2002; Rodríguez-Lado and Lado 2017). Various 
studies found different ranges of the information 
dimension. Montero (2005) found a variation range 
of (D(1)) between 0.77~0.88, Paz-Ferreiro et al. (2010) 
introduced a range of 0.859~0.921, and Martı et al. 
(2002) reported a range of 0.75~0.95, Rodríguez-
Lado and Lado (2017) published a range of 

0.772~0.934. The larger correlation dimension D(2) 
is, the more uniform the PSD is, in the measurement 
interval. The relationship between f[α(q)] and α(q) 
could provide more information of fractal structure. 

Different land use patterns have a great influence 
on soil particle evolution. The multifractal parameters 
are closely related to the composition of soil particles. 
As for the parameters in the generalized dimension, a 
significant positive correlation was found between D(0) 
and clay content. A similar result was shown in Qi et al. 
(2018). The value variation range of clay content of 
collected samples was small, correspondingly, the 
difference of D(0) under different land use patterns was 
not obvious. Parameter D(1) presented a positive 
correlation with sand content, and a negative correlation 
with silt content. However, some existing studies have 
represented a significant relationship between D(1) and 
clay particles (Miranda et al. 2006; De et al. 2008). No 
significant relationship between D(2) and soil particle 
volume fraction was demonstrated in this study. 
However, previous studies have shown some other 
results. Negative correlations were found between D(2) 
and clay content in the study of Miranda et al. (2006), 
while positive correlations were exhibited between D(2) 
and clay content in Qi et al. (2018). Δα(q) and α(0) were 
positively related with clay and silt content, negatively 
related with sand content while Δf[α(q)] was positively 
related with sand content and negatively related with 
clay and silt content. The above-mentioned results are 
slightly different from previous studies. The findings of 
Sun et al. (2016) reported that D(1) and D(2) were 
positively correlated with clay and silt content, 
negatively correlated with sand content while Δα(q) was 
positively correlated with clay content and negatively 
correlated with sand content. Consequently, the soil 
particle composition (clay, silt, sand content) had a 
great influence on symmetry, heterogeneity, and 
average singular strength of the whole multifractal 
structure. Posadas et al. (2001) found that the 
proportional allocation of clay, silt and sand content 
affected the scale properties of single fractal and 
multifractal. The high probability subsets of purple 
soil were mainly concentrated in silt and sand grains 
due to their absolute dominance in soil composition. 
Although the volume fraction of clay was extremely 
small, it may have an unexpected influence on 
multifractal parameters. Posadas et al. (2001) arrived at 
a conclusion that clay particles were the most important 
factor affecting heterogeneity, and the heterogeneity of 
distribution increased with the increase of clay content. 
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The relationship between soil PSD and multifractal 
properties varies from study to study. Further research is 
needed to find out the reasons for the inconsistent 
results among different studies. 

4.3 Spatial distribution characteristics 

Spatial distribution characteristic of the 6 
parameters in the catchment exhibited a relatively 
weak and moderate spatial variability, without strong 
variation. A small area (0.51 km2) of the catchment 
could be the main reason, sharing the same climate 
and parent material, which are major factors to affect 
the characteristic of soil  PSD in a large scale 
(Rodríguez-Lado and Lado 2017). On the other hand, 
three kinds of land-use patterns (dry land, orchard, 
paddy) were subject to long-term interference from 
human farming activities, which also accounted for 
the mild spatial variation characteristic. Besides, 
fragmented and interlaced terrain may also be a factor. 

5    Conclusions 

This study explored the multifractal properties 
and spatial distribution characteristics of soil PSD in a 
representative agricultural catchment of the Three 
Gorges Reservoir area by methods of multifractal 
theory and geo-statistics. The results indicated that 
soil particles for different land use patterns were not 

evenly distributed in the study area. In addition, the 
coarse particles (sand and silt) were dominant in 
purple soil, and the degree of variation was greater 
than that of fine particles (clay). The changes in the 
dense distribution area of purple soil particles can be 
better reflected by the generalized dimension 
spectrum compared to the sparse distribution area. 
Eminently, forest land has a stronger even grain size 
distribution among the four patterns of land use 
studied. Tillage activities may make the distribution 
of soil particles more uneven. The four land-use 
patterns in this study have significant impacts on 
multifractal parameters except spectral width (Δα(q)). 
Thus, these parameters can be used to reflect the 
impact of land use on soil physical properties. 

Our work focused exclusively on multifractal 
features in different land-use patterns and the spatial 
variability of soil PSD. Divergent trends in the spatial 
variability of multi-fractal parameters of soil PSD 
were found in the experimental site. Accordingly, 
further researches should be conducted on the 
reasons for this difference. 
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