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Abstract: The study of the interaction of mud-flows 
with obstacles is important to define inundation zones 
in urban areas and to design the possible structural 
countermeasures. The paper numerically investigates 
the impact of a mud-flow on rigid obstacles to 
evaluate the force acting on them using two different 
depth-integrated theoretical models, Single-Phase 
Model (SPM) and Two-Phase Model (TPM), to 
compare their performance and limits. In the first one 
the water-sediment mixture is represented as a 
homogeneous continuum described by a shear-
thinning power-law rheology. Alternatively, the two-
phase model proposed by Di Cristo et al in 2016 is 
used, which separately accounts for the liquid and 
solid phases. The considered test cases are 
represented by a 1D landslide flowing on a steep slope 
impacting on a rigid wall and a 2D mud dam-break 
flowing on a horizontal bottom in presence of single 
and multiple rigid obstacles. In the 1D test case, 
characterized by a very steep slope, the Two-Phase 
Model predicts the separation between the two phases 
with a significant longitudinal variation of the solid 
concentration. In this case the results indicate 
appreciable differences between the two models in the 
estimation of both the wave celerity and the 
magnitude of the impact, with an overestimation of 
the peak force when using the Single-Phase Model. In 

the 2D test-cases, where the liquid and solid phases 
remain mixed, even if the flow fields predicted by the 
two models present some differences, the essential 
features of the interaction with the obstacles, along 
with the maximum impact force, are comparable.  
 
Keywords: Mud-Flow; Impact force; Two-phase 
model; Power-law. 

Introduction  

Gravity-driven debris and mud-flows involving 
multi-phase mixtures typically occur in mountain 
areas triggered by heavy rains (Hutter et al. 1996; 
Iverson and Denlinger 2001) and are characterized 
by the strong interaction between solid and fluid. 
These phenomena have a very destructive power, 
producing loss of human lives, damages and 
modifying topography (Takahashi 2007). In 
particular, the expression “mud flow” denotes the 
motion of a highly-concentrated mixture of water 
and fine sediments.  

The implementation of appropriate risk 
mitigation strategies is essential to prevent 
damages and to reduce losses. For this reason, it is 
crucial to predict the flow evolution, identifying the 
paths, the runout distances and the inundated 
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areas (Cui et al. 2011), to evaluate the impact on 
buildings, piles, vegetations, but also to design 
structural defense measures. Different solutions 
may be adopted to obstruct landslides or mud-
debris flows, to reduce their mobility or to deflect 
their direction. Some examples of these solutions 
are barriers, breaking mounds, detention basins, 
channel diversions, deflecting dykes (Hung et al. 
1984; Mizuyam 2008; Jóhannesson et al. 2009). In 
particular, to reduce the flow mobility and to 
dissipate flow energy, countermeasures include 
single or multiple structures, such as rigid or 
flexible barriers, levees, silt dams and baffles (e.g. 
Ng et al. 2015; Wang et al. 2017).  

To define the inundation zone in urban areas 
and to select the most appropriate 
countermeasures, their location and dimension, 
the study of the complex interaction between 
debris or mud-flows with obstacles is extremely 
important. The objective of the present paper is to 
investigate the performance of two different 
theoretical models in reproducing the impact of a 
mud-flow on rigid obstacles.  

The selection of the most adequate model for 
reproducing the flow of water-solid mixtures is not 
a simple task and many options are available. In 
literature, these flows have been mainly 
investigated using single-phase description of the 
flowing medium considered as a homogeneous 
continuum with a non-Newtonian behavior (e.g. 
Dent and Lang 1983; Liu and Mei 1989; Coussot 
1997; Huang and Garcia 1998). Alternatively water-
sediment flows have been reproduced with quasi-
single phase mixture (e.g. Xia et al. 2018) and two-
phase (e.g. Iverson 1997; Iverson and Denlinger 
2001; Pitman and Le 2005; Greco et al. 2012a; Li 
et al. 2018a,b) models. 

Different models have been proposed 
describing debris and mud-flows as a 
homogeneous continuum medium and employing a 
non-Newtonian behavior to incorporate the effect 
of particle interactions (Coussot 1994). The 
adoption of different formulations depends on the 
mixture characteristics, such as concentration, and 
on the type of the solid fraction. Some models 
account for the presence of a yield stress, such as 
the Bingham model (e.g. Liu and Mei 1989; Imran 
et al. 2001; Hewitt and Balmforth, 2013) and the 
Herschel–Bulkley (e.g. Huang and Garcia 1998; 
Chanson et al. 2006), while the power-law fluid 

rheology has been proposed for describing more 
adequately fluids that do not show any appreciable 
yield stress at low shear rates (Ng and Mei 1994; 
Hwang et al. 1994; Perazzo and Gratton 2004). 
Many studies have been performed for 
investigating the applicability and the 
characteristics of the power-law fluids (e.g. Burger 
et al. 2010; Di Cristo et al. 2014;  Turnbull et al. 
2015; Campomaggiore et al. 2016; Di Cristo et al. 
2018a), suggesting that this rheology is suitable for 
reproducing the behavior of magmas, mining 
residuals and fine sediment-water mixtures, which 
are encountered in flows with a finite fraction of 
sediments such as mud-flows (e.g. Ng and Mei 
1994; Sonder et al. 2006; Longo et al. 2015). For 
instance, a shear-thinning power-law model is the 
most appropriate in characterizing the rheology of 
the soil collected in Cervinara (Avellino, South 
Italy), where a catastrophic landslide occurred in 
1999 (Carotenuto et al. 2015) or of the natural 
estuarine mud dredged from Haihe River in Tianjin 
and Mazhou Island near Shenzhen (Zhang et al. 
2010). 

Iverson (1997) suggested that these single-
phase models cannot capture the interactions 
between the fluid and solid phases that are crucial 
for the description of the observed behavior of 
debris flows, recommending the use of two-phase 
models. However, some of them are essentially 
quasi single-phase because they neglect the 
difference between sediment and water velocities; 
moreover, the role of the pore fluid is 
parametrically incorporated (Iverson and 
Denlinger 2001; Pudasaini et al. 2005; Fernandez-
Nieto et al. 2008). Without considering the 
different velocities of the two phases, the drag force 
is not accounted for. The formulation proposed by 
Pitman and Le (2005) or its variant suggested by 
Pelati et al. (2008) accounts for the mass and 
momentum equations for both the solid and fluid 
components, including the drag forces, but neglects 
the viscous effect on fluid phase. Meng and Wang 
(2016) improved the model of Pitman and Le 
(2005) considering the contribution of fluid 
viscosity. 

A significant improvement in two-phase 
modelling is represented by the model by 
Pudasaini (2012), which considered three 
innovative aspects (enhanced non-Newtonian 
viscous stress, virtual mass and generalized drag 
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forces) for better reproducing important physical 
characteristics of debris flow dynamic. The model 
is very complex and not easy to apply, but it 
showed very good performances in different test 
cases. Successively, He et al. (2014) obtained 
results comparable with the ones of Pudasaini 
(2012) with a model in which the solid stress is 
modelled through the Mohr-Coulomb plasticity 
and a Newtonian viscous stress is considered for 
the liquid.  

Alternatively, Greco et al. (2012a), starting 
from Di Cristo et al. (2006), proposed a two-phase 
model, which separately considers the liquid and 
the solid phases accounting for the difference 
between their velocities. The model has been 
applied for reproducing fast transient flows, 
involving sediment transport in the form of bed-
load and bottom deformation. Later on, in Di 
Cristo et al. (2016) and in Di Cristo et al. (2018b), 
the model has been extended to include also the 
suspended load and the occurrence of bottom mass 
failures due to slope instability, respectively. 
Recently, Li et al. (2018a) presented a two-phase 
model for reproducing a debris flow over a fixed 
bed, which incorporates interphase and particle-
particle interaction, fluid and solid fluctuations and 
multiple grain sizes, showing the crucial role of the 
stresses due to fluctuations and of the adequate 
estimation of the bed shear stress for reproducing 
the phenomenon. The same authors extended the 
model applicability to erodible beds, incorporating 
the mass exchange between bed and flow with the 
introduction of a new relationship and adopting a 
new closure model for estimating the bed shear 
stress, showing a good agreement with 
experimental laboratory data Li et al. (2018b). Xia 
et al. (2018) proposed a quasi-single-phase mixture 
model in which the stresses due to fluctuations are 
incorporated and compared its performance with a 
traditional single-phase mixture and the models by 
Li et al. (2018a). The single-phase model performs 
better than the traditional one and even if it the 
results of the two-phase models are relatively 
better, it is still competitive in terms of 
computational cost. 

In structural engineering applications the 
dynamic impact of a debris flow on a structure is 
often evaluated by empirical formulas adopting the 
hydrostatic pressure or the impact velocity of the 
incident flow multiplied by a safety factor larger 

than one. However, this practice may produce an 
uncorrect estimation of the force (Cui et al. 2015; 
Sovilla et al. 2016). Therefore, to give accurate 
indications to engineer and structural designers, it 
is crucial to reproduce the principal kinetic 
characteristics of the dynamic impact. 

Many literature studies investigated the 
impact of dry granular flow and snow avalanches 
on structures (e.g. Tai et al. 2001; Faug 2005; 
Chiou et al. 2005; Teufelsbauer et al. 2009; Cui 
and Gray 2013) with special attention to the 
configuration with multiples obstacles, such as 
arrays of baffles (e.g., Ng et al.2015). The 
interaction of viscous debris flows with obstacles 
and the evaluation of the impact force has been 
object of both experimental and numerical 
researches (e.g. Canelli et al. 2012; Scheidl et al. 
2013). Cui et al. (2015) carried out laboratory 
experiments to study the impact force of a viscous 
debris flow, measuring separately the dynamic 
pressure of the slurry and the impact pressure of 
the coarse grains, through a wavelet analysis of the 
signal. An empirical model is proposed for 
predicting the slurry impact, while the grain 
pressure is random and the particles impact 
frequency in the flow front is larger than in the 
body. Vagnon and Segalini (2016) performed a set 
of small scale experiments of a debris flow 
impacting on a rigid barrier, proposing a new 
equation for estimating the impact force, which 
considers flow characteristics, material properties 
and barrier dimensions. However, owing to the 
scale effects, the direct application to real cases of 
results deduced in laboratory may be not 
straightforward (Iverson 1997; Vagnon and 
Segalini 2016).  

Among the numerical studies, particular 
interest plays the study of debris flow impact in 
presence of multiple obstacles. Recently Gao et al. 
(2017) simulated the impact pressure of a debris 
propagating in urban areas with a depth-integrated 
continuum model, able to consider building 
blockage effects, bed erosion and deposition 
changing the mixture concentration. The obstacles 
increase the depth and velocity of the flow as the 
debris tends to run up and to deposit in front of the 
buildings increasing the impact pressure, in line 
with field observations and experiments. Kattel et 
al. (2018) modelled a two-phase debris flow as a 
mixture of a solid particles and viscous fluid down 
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an inclined surface with tetrahedral obstacles of 
different dimensions, number and orientation, 
using the quasi-three-dimensional model of 
Pudasaini (2012). It has been shown that the 
presence of obstacles may increase the solid and 
fluid phases separation and it strongly influences 
the flow spreading, the run out and the deposition.  

Differently of the debris flows, a limited 
number of studies have been carried out with 
reference to the interaction of mud-flows with 
obstacles. Tiberghien et al. (2007) and Laigle and 
Labbe (2017) studied the impact of mudflows 
experimentally and numerically, respectively. In 
the former paper, laboratory experiments have 
been performed for measuring mud-flow velocity 
and pressure close to a rigid barrier, demonstrating 
the existence of two distinct impact regimes 
associated with supercritical and subcritical 
incident mudflows. In Laigle and Labbe (2017) the 
impact of dam-break mud-flow is numerically 
simulated using the SPH method and the Herschel-
Bulkley rheology has been considered. The model, 
validated on benchmarks, is shown to be able to 
reproduce the local characteristics of the flow near 
the obstacle, the length of the dead-zone of fluid at 
rest which forms upstream of the obstacle and the 
pressure.  

The present research numerically investigates 
the interaction of mud-flows on rigid obstacles 
using depth-integrated models. The depth-
integrated schematization, valid when the length 
scale normal to the bottom is very small compared 
to longitudinal and transverse length scales, has 
been widely assumed for simulating the behaviour 
of different kinds of earth-surface flows, such as 
dam breaks (e.g., Wu and Wang 2007; Soarez-
Frasao et al. 2012), debris/mud events (e.g. 
O'Brien et al. 1993; Hübl and Steinwendtner 2001; 
Pudasaini 2012; Iverson and George 2014) and to 
evaluate associated forces on rigid structures 
(Shige-eda and J.Akiyama 2003; Bukreev 2009; 
Kattel et al. 2018).  

In the study two different depth-integrated 
models have been used.  

The first one essentially consists in the Single-
Phase Model (SPM) with the slurry rheology 
described by a homogeneous power-law fluid. In 
particular, the model proposed by Ng and Mei 
(1994), deduced in laminar conditions under the 
boundary-layer approximation, has been adopted. 

Such a model, although less rigorous than the ones 
deduced through the asymptotic expansions of 
solutions of the Cauchy Momentum equations (e.g. 
Fernandez-Nieto et al. 2010; Noble and Vila 2010), 
is widely used in environmental applications owing 
to its simplicity. The validity of laminar flow 
condition essentially derives from the observation 
that turbulent non-Newtonian flows occur in rare 
situations (Rudman et al. 2004; Rudman and 
Blackburn 2006). Moreover, a physically consistent 
turbulent model for generalized non-Newtonian 
fluid is still missing (Gori and Boghi 2011, 2012), 
despite some progress have been made in the 
Direct Numerical Simulation (DNS) investigation 
(Gavrilov and Rudyak 2016, 2107).  

The second one is the two-phase shallow-water 
model proposed by Di Cristo et al. (2016). In this 
case the term Two-Phase Model (TPM) is be 
intended in the sense of Euler-Euler model 
(Sharma et al. 2017; Wang et al. 2010) and not as 
Euler-Lagrange model (Kolesnichenko and 
Shiriaev 2002; Morabito et al. 2004).  

The objective of the present research is to 
compare performance and limits of the two 
approaches in reproducing the complex interaction 
between the mud-flows and the rigid obstacles. 
Due to the difficulty in deciding which approach is 
preferable, the main goal of the comparison is to 
understand if there are significant differences in 
the simulation results and, in particular, in the 
impact force estimation. Both one-dimensional and 
two-dimensional test-cases have been considered 
and discussed.  

The article is organized as follows. In section 1 
both the Single and the Two Phase Models are 
briefly described. Some details concerning their 
numerical solution are also given. In Section 2 the 
application of both models for reproducing the 
impact of mud-waves, originating by a dam break, 
with rigid obstacle, is presented. Both 1D and 2D 
tests have been considered. As far as the latter is 
concerned, two different configurations, obtained 
varying the number of rigid obstacles, have been 
simulated.  

1    Model Description  

1.1 Single-Phase Model (SPM) 

The depth-integrated equations of a one-
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dimensional unsteady, gradually-varied, laminar 
flow of a layer of power-law fluid over a not 
erodible bed proposed by Ng and Mei (1994), have 
been straightforwardly extended to the two-
dimensional case. Denoting with x and y the 
directions in the horizontal plane and with t the 
time, the dimensional two-dimensional governing 
equations (in conservative variables) read: 

SPM SPM SPM
SPMt x y

  
  

  

ˆˆU F G
Ŝ         (1)  
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SPM m m m m mh h U h V   U denotes the 

unknowns vector, in which hm is the flow depth and 
T

m m mU V   U  is fluid velocity. The expressions 

of the flux functions SPMF̂  and SPMĜ   of the 

source term SPMŜ  are: 
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in which g denotes the gravity acceleration, x (resp. 
y) is the bed slope respect to the horizontal plane 
in the x (resp. y) direction, considered constant 
and positive.  n n2 2 1 (3 2)    is the 
dimensionless momentum flux correction factor 
(Di Cristo et al. 2013) and m is the density of the 
mixture, which is assumed constant (Ng and Mei 
1994). m represents the bottom shear stress, whose 
expression, for a power-law fluid, is: 

n
n

m m m m
m

n

n h
11 2 1  

  
 

 U U         (3) 

It is easy to verify that the system represented 
by Eq(1) is of hyperbolic type and the expression of 
the eigenvalues is: 

  m1 U s
                  

  22,3 1m m mgh        U s U s         

(4) 

where s denotes the director cosines of an arbitrary 
direction in the (x, y) plane.  

System (1) may be solved with any of the 
numerical schemes commonly employed for Saint-
Venant Equations. In the present paper, the Finite 
Volume solver FIVFLOOD (Leopardi et al. 2002; 
Greco et al. 2012b) has been adapted. The solver 
uses a McCormack (predictor-corrector) scheme 
with a three-point parabolic interpolation of the 
conserved variables values for evaluating the fluxes 
at the cells interfaces. The CFL condition, written 
with reference to the largest eigenvalue (Eq.(4)), 
has been imposed to define the Δt value. 

Starting from the Single-Phase Model and the 
corresponding numerical method, the turbulent 
clear water case has been simulated simply setting 
the dimensionless momentum flux correction 
factor 　equal to one and expressing the bottom 
shear stress through the Chezy formula. 

1.2 Two-Phase Model (TPM) 

A reduced version of the two-phase depth-
integrated model proposed by Di Cristo et al. (2016) 
is used here, and it is briefly presented in the 
following. Differently from the Di Cristo et al. 
(2016) model, the bed erosion/deposition 
processes have been neglected and the only bed-
load dynamics is considered without accounting for 
the suspended load. Considering a uniformly-
graded non-cohesive uniform sediment (with 
diameter d) and neglecting both lift and virtual 
(added) mass forces, the dynamics of the mixture is 
analyzed considering two distinct velocities for 
sediment and water along with the variability of 
sediment concentration. The equations are also 
limited by the absence of inflow and outflow from 
sidewalls and free-surface. The dimensional 
governing equations read: 

TPM TPM TPM
TPMt x y

U F G
S

  
  
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ˆˆ
ˆ             (5) 



J. Mt. Sci. (2019) 16(2): 364-382 

 

 369

in which         
T

TPM l s l l l l s s s sU V U VU is the 

conservative unknowns vector, having denoted 
with l (resp. s) the liquid (resp. solid) phase 
volume for unit bottom surface and with 

T
l l lU V   U  (resp. T

s s sU V   U ) the 

corresponding velocity.  
Denoting with l (resp. s) the liquid (resp. 

solid) density and with r the ratio r=(s–l)/l, the 

flux functions TPMF̂  and TPMĜ  and the source 

term TPMŜ  are given by Di Cristo et al. (2016): 
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In Eqs. (6), D represents the drag force by the 
water on the solid particles: 

 s
l D l s l sC

d


  D U U U U             (7) 

where CD is the bulk drag coefficient (Di Cristo et al. 
2016). Following Greco et al. (2018), the simplified 

form of the bottom shear stress acting on the liquid 
(l) and solid (s) phases are given by  
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where d,  and CCh are the dynamic friction, the 
interparticle collisional stress (Bagnold) and the 
dimensionless Chezy coefficients, respectively.  

The solid concentration Cs in Eqs. (6) may be 
expressed in terms of s as it follows: 

s
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where the ratio of the bed-load layer thickness to 
sediment diameter (Ks) is given by the following 
expression (Di Cristo et al. 2016):  
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where s is the static friction coefficient and k1 is a 
dimensionless coefficient (Di Cristo et al. 2016). 

The eigenvalues of the reduced TPS (Eq.5) are: 

l1  U s ; s2  U s ;            

 
s

s s s
s

Kgdr
K

r3,4 2 1
 




   
 

U s ;              

 l l sg5,6     U s                (12) 

The derivative s sK   appearing in Eq. (12) 
can be easily deduced from Eq. (11). 

The hyperbolic system (5) has been solved 
using 2D quadrangular meshes, previously 
developed for analysing 2D conditions even in 
presence of geofailure (Evangelista et al. 2015; Di 
Cristo et al. 2018b). The numerical method consists 
in a mixed cell-centred (CCFV) and node-centred 
(NCFV) finite-volume. In particular the variables l, 
s Ul and Us, are defined at the center of the cell 
while the bottom elevations, needed to define the 
bed slope s, are collocated at each node of the cells. 
The numerical fluxes of Eq. (5) are calculated using 
the first-order Harten–Lax–Van Leer (HLL) 
scheme (Harten et al. 1983).  

The time step has been chosen to satisfy the 
CFL condition, expressed with reference to the 
largest eigenvalue in Eq. (12). 
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2    Results 

Both single and two-phase models have been 
applied for analyzing the propagation of dam-break 
waves over a non-erodible floodplain in presence of 
rigid obstacles. The test-cases discussed in what 
follows have been chosen with the aim of 
representing, among an infinitely wide spectrum of 
possibilities, two alternative scenarios: one in 
which slope and friction are expected to dominate 
the wave propagation, and another one where 
inertia plays the main role. For the sake of 
comparison, a third scenario has been simulated in 
which the flowing medium is the turbulent clear-
water, denoted in what follow as Clear Water 
Model (CWM). 

The impact force exerted against the obstacle 
is assumed as an integral parameter to concisely 
highlight the differences resulting from the two 
alternative approaches, i.e. SPM and TPM. The 
impact force has been evaluated by numerically 
computing the following integrals: 

2

2
m

SPM m m m n
h

h U g, ˆ d
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where  denotes the boundary of the obstacle and 
n̂  is the corresponding normal unit vector. In Eqs. 
(13)-(15), the values of the flow variables in the 
cells adjacent to the obstacles have been used. 

2.1 The 1D landslide test-case 

The first considered test-case is the collapse of 
a volume of saturated soil accordingly to the 
scheme of Figure 1 (Iervolino et al. 2017), inspired 
to the mudflow occurred in Cervinara (Avellino, 
South Italy), where a catastrophic landslide 
occurred in 1999. The fixed volume of slurry 
(Lm=100 m, h0=2 m) starts moving downstream in 
an infinitely wide channel (L=100 m) which ends 
with a wall. The bed slope (=20°) is assumed 

constant. The slurry, represented through the 
power-law Single-Phase Model with a rheological 
index n=0.01, is characterized by a solid volumetric 
concentration of 40% and by a consistency of 71.3 
Pa sn. These rheological properties have been 
described supposing that the fluid in the reservoir 
consists in a highly-concentrated mixture of water 
and fine sediment, equivalent to the one 
characterizing the mud flood occurred in 1999 at 
Cervinara site (Italy).  

In performing the numerical simulation with 
the Two-Phase Model, the density and the diameter 
of the sediment particles have been assumed equal 
to 2.66g/cm3 and 10 m, respectively. The static 
and dynamic friction angles have been fixed equal 
to 45° and 30°, respectively; the dimensionless 
Chezy and the k1 coefficient have been set equal to 
CCh=25 and 0.66, respectively. In the turbulent 
clear water scenario, the bottom shear stress is 
evaluated by Chezy formula with CCh =25.  

In all the considered situations, the numerical 
simulations have been performed considering 
x=0.1 m, and a time-step of t= 1/2048 s which 
guarantees the fulfillment of the CFL condition for 
all cases.  

Figure 2a compares the time history of the 
force (computed with reference to a unitary width 
in the transversal direction) on the obstacle 
predicted by the three models. The mudflow 
dynamics may be discussed by individuating three 
distinct phases in the time history of the impact 
force. The first one is the propagation of the 
landslide until the downstream wall is reached, and 
it ends when the force suddenly starts to increase. 
The first impact of the mud wave on the wall 
represents the second phase, which is characterized 
by a monotone increase of the wave height and in 
turn of the impact force up to the attainment of the 
maximum value. Except for the TPM the flow 

 
Figure 1 Sketch of 1D landslide test-case. 
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proceeds as a sequence of waves generated by the 
upwards reflection from the downstream wall, 
followed by a further downhill propagation of the 
slurry against it. The first wave of this sequence is 
considered as the third phase, which is therefore 
comprised between the instants when the first and 
the second maximum force values occur at the 
downstream wall. 

Figure 2a shows that the SPM predicts the 
shortest time to reach the downstream wall: this is 
easily explained accounting for the slope-induced 
acceleration of the slurry, which is far more 
effective on the highly shear-thinning fluid (power-
law mixture) compared with both the TPM and the 
CWM. On the other hand, the TPM exhibits the 
maximum duration of the approaching phase 
which exceeds the SPM by about 3 s. Finally, the 
CWM shows an intermediate behaviour. 

As far as the second phase of the wave 
dynamics is concerned, the SPM predicts the 
higher value of the maximum impact force 

( SPMF max 4.6 kN ) which is nearly twice the value of 

the TPM ( TPMF max 2.4 kN ). The TPM value is not 

very different than the impact force predicted by 
the CWM ( CWMF max 2.7 kN ) but slightly smaller. 

With reference to the two-phase formulation, 
Figure 2b separately represents the contribution of 
liquid and solid phases to the resulting force, 
showing that the latter contributes for only about 
20% of the maximum impact force. A close 
examination of Figure 2b reveals also a small time-
lag of the impact of the solid phase, which is 
however almost entirely recovered in the 
attainment of the maximum force. 

Finally, it is worth of note that the third phase 
for the TPM does not show the existence of a 
second maximum. Contrarily to the other two 
formulations the force does not vary substantially 
after the first impact. However, a close inspection 
of Figure 2b reveals a slight but progressive 
increase of the force due to the sediment phase, 
which corresponds to the progressive stopover of 
the sediment up to a stationary rest condition.  

The difference in the maximum values of the 
impact force between SPM and CWM can be easily 
explained accounting for both the difference in the 
medium specific weight (CWM= 9806 N/m3, 
SPM=16317 N/m3) and the higher velocity reached 
by the SPM wave due to the shear-thinning attitude, 
which implies higher values of the flow depth at the 
impact against the wall.  

On the other hand, a more detailed analysis of 
the wave propagation may be helpful to gain 
insights on the difference between the impact 
forces predicted by SPM and TPM. To this aim, 
Figure 3 shows the computed instantaneous flow 
depth profiles for the three different formulations 
at different instants during the first phase of wave 
propagation. Immediately after the landslide 
triggering, two waves propagating downstream 
arise. The first one, originated at x=0 is a 
“compression” wave, while the second, originated 
at x=-Lm, is a “rarefaction” one. Owing to the 
presence of these two waves, the portion of the 
channel where the flow depth attains the initial 
value reduces with time. Moreover, the celerity of 
the rarefaction wave appears larger than that of the 
compression one. For instance, at t = 6 s Figure 3 
indicates that the initial flow depth value is found 
for -30 m < x < 10 m for the TPM (Figure 3c), for -7 

     

 
Figure 2 Time history of computed impact force 
against the obstacle for (a) Single-Phase Model (SPM), 
Two-Phase Model (TPM) and Clear Water Model 
(CWM); (b) Two-Phase Model (TPM), repartition 
between the liquid and solid phases. 
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m < x < 33 m for SPM (Figure 3a) and for -10 m < x 
< 36 m for CWM (Figure 3e).  

The SPM behaves similarly to CWM in the 
rarefaction wave, while the differences are 
observed on the compression wave, which is far 
more influenced by the bottom resistance law. The 
difference in the response of the medium to the 
slope forcing results in very elongated wave profiles 
in the downstream region for SPM whereas the 

downstream tip of the CWM simulation assumes 
the typical convex shape of the Dressler solution 
(Dressler 1952). Conversely, the TPM waves are 
characterised by larger flow depth in the 
rarefaction region and by a slower and thinner 
downstream limb, compared with both SPM and 
CWM counterparts. For instance, at t=6 s, the flow 
depth predicted at x= 50 by SPM m is hSPM=1.25 m, 
close to the clear water value hCWM=1.40, whereas 

     
 

     
 

      
Figure 3 Instantaneous longitudinal flow depth profiles for (a, b) Single-Phase Model (SPM), (c, d) Two-Phase 
Model (TPM) and (e, f) Clear Water Model (CWM). 
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hTPM=0.60 m. Furthermore, the compression 
region of the TPM ends with a bore. The diverse 
behaviour in the downstream region affects the 
peak wave heights at the obstacle, depicted in 
Figure 3: hTPM=19.9 m at t=12 s (Figure 3d), 
whereas at t=10 s hCWM=21.8 m (Figure 3f) and 
hSPM=20.7 m (Figure 3b).  

The composition of the TPM wave during the 
approaching and the impact stages can be inferred 
by Figure 4, showing the repartition of the total 
flow depth between the two phases. In the 
downstream part of the wave a progressive 
separation of the phases is observed, with the 
sediment wave lagging the liquid one (Figure 4a). 
This effect is related to the combined action of 
slope and bottom shear stress, occurring in the 
considered example. Owing to the different 
response of the two phases, the actual solid 
concentration of the mixture at the impact of the 
wave is smaller than in the initial condition: Figure 
4b indicates that at t=12 s only 30% of the total 
volume is occupied by solid (s=4.7m).  

In conclusion, the observed lower maximum 
impact force of TPM compared with SPM can be 
explained by the combination of two factors: a 
smaller wave height in the TPM and a reduction in 
the mixture bulk density due to the different 
dynamics of the two phases. Finally, Figure 4 also 
shows the occurrence of a further, yet slower, phase 
separation in the upstream of the wave, where a 
sediment-only wave progressively develops.  

The above results suggest that in the presence 
of a significant longitudinal variation of the solid 
concentration the descriptions provided by the 
TPM and the SPM may lead to appreciable 
differences in the estimation of both the wave 
celerity and the magnitude of the impact force. The 
latter may be strongly overestimated by using a 
Single-Phase Model which, owing its nature, 
cannot correctly account for the change in the 
concentration of the two phases constituting the 
mixture along the direction of propagation of the 
wave.  

2.2 The 2D dam-break with obstacles test-
case 

To study the interaction between mud-flows 
and single obstacle, in which the inertia may play a 
main role, the geometric scheme studied in Aureli 

et al. (2015), is initially considered. The authors 
experimentally and numerically analyzed the 
impact of a water wave originated from the sudden 
removal of the gate on single central rectangular 
rigid block (Figure 5). The bottom was horizontal 
and the water level in the reservoir was set equal to 
10 cm. In that paper three different mathematical 
models, i.e. a 2D depth-averaged, a 3D Eulerian 
and a 3D Smoothed Particle Hydrodynamics (SPH) 
model, have been considered. A time history of the 

     

 
Figure 4 Two-Phase Model. Instantaneous 
longitudinal specific phase volume depth profiles. Solid 
line: liquid phase; Dashed line: solid phase. 

 

Figure 5 Sketch of 2D dam-break with obstacle test-
case. 
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impact force on the obstacle was measured, by load 
cells mounted inside the obstacle, and compared 
with the numerical predictions. It has been shown 
that once calibrated, all mathematical models are 
able to reproduce the essential features of the 
phenomenon. In particular, the 2D shallow water 
model, although not suitable to accurately 
reproduce the first few instants of the impact force 
time history, leads to an error in the peak load 
estimation within only 10% of the measured values. 
Therefore, the 2D approach may be considered 
appropriate for practical applications. Furthermore, 
the numerical results deduced through the depth 
integrated model are comparable with the 
experimental data, as well as with the numerical 
predictions of far more sophisticated and 
computationally demanding 3D solvers.  

The same geometrical scheme is herein 
considered with a mud flow (Test 1), reproducing 
its impact on the block using both the SPM and the 
TPM. The turbulent clear water case is also 
reproduced to verify the models’ performances 
respect the experimental data and the simulation 
performed by Aureli et al. (2015). The geometry 
has been successively modified adding two half size 
obstacles symmetrically on the sides of the central 
block (Test 2).  

The assumed mud fluid is the same highly-
concentrated mixture of water and fine sediment 
considered in the previous test-case. Numerical 
simulations have been performed considering 
x=y=0.005 m, and a time-step t= 1/4096 s 
which guarantees the fulfillment of the CFL 
condition.  

Figure 6a compares the time history of the 

force on the obstacle predicted by both SPM and 
TPM. The results referring to the turbulent Clear 
Water Model (CWM) wave resulting from both 
present calculation and Aureli et al. (2015), are also 
reported. For the CWM, the present results are in 
very good agreement with the ones of Aureli et al. 
(2015), confirming the quality of the present 
numerical method. 

Compared with the water wave case, the 
computed force against the obstacle of the mud-
flow is notably different for both the considered 
models, with the peak value that approximately 
doubles up the CWM one: CWMF max 6.6 N , 

SPMF max 11.8 N , TPMF max 10.8 N . This is partially due 

to the increase of the specific weight of the mixture 
respect to the clear-water case. In fact, dividing the 
peak value of the force by the corresponding 
specific weight these differences are reduced, even 
if the predictions relative to the mud-flows exceed 
the clear-water ones of ~80% and ~60% for the 
SPM and the TPM, respectively.  

The comparison among the curves in Figure 6a 
suggests that the impact of the turbulent clear-
water wave on the obstacle occurs slightly later 
with respect to both the SPM and TPM, therefore 
the propagation celerity of the front of the mud-
wave appears to be slightly larger than the one 
pertaining to the turbulent clear-water. The force 
peak value predicted by the TPM is slightly larger 
(~10%) than the one deduced through the SPM, 
while the time at which it occurs appears to be 
almost independent on the model.  

Figure 6b refers only to the TPM, splitting the 
total force into the solid and liquid contributions. 

 

Figure 6 Time history of computed impact force against the obstacle (Test 1) for (a) Single-Phase Model (SPM), Two-
Phase Model (TPM) and Clear Water Model (CWM); (b) repartition between the liquid and solid phase of Two-Phase 
Model (TPM). 
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The solid phase front is characterized by a smaller 
celerity than the liquid one with a contribution to 
the total force less important than the one of the 
liquid phase.  

Aiming to provide a deeper analysis of the 
differences between the two models, the temporal 
evolution of the flow depth is discussed in the 
following. Figures 7 to 10 describe the temporal 
evolution of the flow depth and the instantaneous 
streamlines at different instants: t = 0.5 s, 1.0 s, 1. 5 

s and 2.0 s. In each figure the results of the SPM (a), 
TPM (b) in terms of total mud flow depth are 
shown. For the sake of comparison, the 
corresponding results considering the Turbulent 
Clear Water case are reported (Figures 7c, 8c, 9c, 
10c). As far as the TPM is concerned, Figures 7d, 
8d, 9d, 10d (resp. Figures 7e, 8e, 9e, 10e) report the 
separate contribution of the liquid (resp. solid) 
phase, respectively.  

At t=0.5 s (see Figure 7), in both SPM and 

 

 
Figure 7 Instantaneous flow depth distribution with streamlines superposed for Test 1 at t= 0.5 s for (a) Single-Phase 
Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase from 
Two-Phase Model (TPM). 
 

 

 
Figure 8 Instantaneous flow depth distribution with streamlines superposed for Test 1 at t= 1.0 s for (a) Single-Phase 
Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase from 
Two-Phase Model (TPM).  
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TPM, the body of the wave has reached the obstacle 
and it starts to laterally deflect, splitting in two 
different streams. The comparison between the two 
mud flow models puts in evidence that SPM 
predicts the fastest propagation in the streamwise 
direction (x), in agreement with the force results 
shown in Figure 6a. Contrarily to the previous test-
case, no phase separation occurs in this example, 
as clearly indicated by Figures 7d and 7e which 
show that solid phase strictly follows the liquid one. 

Moreover, even the instantaneous streamlines of 
the solid and liquid phase appear very similar. The 
results of the TPM shear some similarities with the 
CWM.  

After the impact (t=1.0 s, Figure 8), the lateral 
deflection of the wave caused by the obstacle 
increases, independently of the fluid and of the 
model. While the interaction of the split stream 
with the lateral walls is almost completed in the 
SPM (Figure 8a), it is just starting with the TPM 

 

 
Figure 9 Instantaneous flow depth distribution with streamlines superposed for Test 1 at t= 1.5 s for (a) Single-Phase 
Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase from 
Two-Phase Model (TPM). 

 

 

 
Figure 10 Instantaneous flow depth distribution with streamlines superposed for Test 1 at t= 2.0 s for (a) Single-
Phase Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase 
from Two-Phase Model (TPM). 
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(Figure 8b). Moreover, in the SPM the wave front 
has arrived at the downstream end of the plotted 
region, while in the TPM is still far from it. The 
comparison between Figure 8b and Figure 8c 
suggests that presence of the solid phase produces 
only a slightly reduction of the celerity of the wave 
in the TPM respect the CWM. The absence of any 
phase separation in the TPM model is again clearly 
put in evidence by Figures 8d, 8e. 

At t=1.5 s (Figure 9), in both Mixture and Two-
Phases models the two streams leave a large dry 
region behind the obstacle, which appears to be 
very regular in the SPM. In contrast the CWM 
predicts that the two currents surround almost 
completely the obstacle strongly reducing the 
extension of the dry zone. Such a difference 
between the mud-models and the turbulent clear 
water case is still present at t=2.0 s (Figure 10). At 
t=2.0 s, both models, similarly to the CWM case, 
predict the presence of recirculation zones close to 
the lateral walls. Figures 9d-9e and 10d-10e 
confirm the absence of any phase separation even 
at t=1.5s and at t=2.0 s, respectively. 

In the Test 2 only the geometry is changed, 
adding two half-size obstacles. For a complete 
comparison with the Test 1, Figure 11a reports the 
time history of the longitudinal force on the central 
(F1=F1,x) and lateral (F2,x) obstacle predicted by the 
SPM and TPM, along with the one produced from 
the CWM. In this case also the transversal 
component of the force acting on the lateral 
obstacle is depicted (F2,y). Figure 11b refers instead 
only to the TPM, reporting the total force and the 
part due to the liquid phase.  

As expected, comparing Figures 6a with 11a, 
the force acting on the central obstacle is 
essentially unaffected by the presence of the lateral 
obstacles. 

About the lateral obstacles, both mud-flow 
models predict that the horizontal and transversal 
components start acting on it at about t=0.8 s, 
without any lag respect to the clear water wave. The 
longitudinal components of the forces predicted by 
the two mud-flow models behave similarly, while 
some differences are observed in the transversal 
components.  

In detail, both models register essentially at 
the same time (t=1.9 s) the same peak value of the 

longitudinal components x SPM x TPMF Fmax max
2,  2,  3.5N  , 

which exceeds the clear-water value of ~40%. 
About the transversal component, the SPM 
produces a higher peak value respect the TPM, 

both higher respect to the CWM: y SPMF max
2,  4.5 N , 

y TPMF max
2,  3.2 N , y CWMF max

2,  2.5 N . Similarly to 

the Test 1, the differences respect to the clear-water 
case are essentially due to the increased specific 
weight of the mixture (results not shown). In the 
SPM the peak value of the transversal component 
is registered at about t=1.2 s and then a reduction 
is observed, while the TPM reaches the maximum 
at t=1.0 s with only a successive slow decrease.  

Figure 11b confirms that in the TPM the 
contribution of the solid to the maximum total 
force is about 40% for both the central and the 
lateral obstacles.  

Figures 12 to 14 report the temporal evolution 
of the flow depth and the instantaneous 
streamlines following the dam break at the instants 

         
Figure 11 Time history of computed impact force against the obstacles (Test 2) for (a) Single-Phase Model (SPM), 
Two-Phase Model (TPM) and Clear Water Model (CWM); (b) repartition between the liquid and solid phase of Two-
Phase Model (TPM). Solid lines: F1; Dashed lines: F2,x; Dashed-dotted lines: F2,y. 
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1.0 s, 1. 5 s and 2.0 s as in Figures 8 to 10. The plots 
at t =0.5 s are not reported because they are 
identical to the ones of Figure 7, since no 
interaction with the additional obstacles is 
observed at that time.  

 At t=1 s (Figure 12) the flow interacts with all 
obstacles independently of the fluid and the 
rheological description adopted for the mixture. 
The two streams formed from the central obstacle 
reach the lateral blocks and they are deflected by 

them. Higher flow depths start to develop at the 
front of the central obstacle and on the side of the 
lateral ones. In all cases there are lateral zones 
close to the dam and a central area in the back of 
the central obstacle with no fluid. In the SPM and 
the TPM there is also small dry area in the back of 
the lateral blocks, not observed for the CWM. 
Compared with Test 1, the presence of multiple 
obstacles does not affect the time evolution of the 
front. At the considered instant, the SPM predicts a 

 

 
Figure 12 Instantaneous flow depth distribution with streamlines superposed for Test 2 at t= 1.0 s for (a) Single-
Phase Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase 
from Two-Phase Model (TPM). 
 

 

 
Figure 13 Instantaneous flow depth distribution with streamlines superposed for Test 2 at t= 1.5 s for (a) Single-
Phase Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase 
from Two-Phase Model (TPM).  
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faster streamwise propagation and a wider 
expansion in the transversal direction respect to 
the TPM, but the observed depths close to the 
obstacles are similar in both models explaining the 
similar impact force observed in Figure 12a at t=1.0 
s. Similarly to the Test 1, in the TPM model no 
phase separation is observed (Figures 11d and 11e) 
and the presence of the solid phase produces only a 
slightly reduction of the celerity of the mud wave 
respect the CWM (Figure 12b and 12c).  

At t=1.5 s (Figure 13) recirculation zones close 
to the lateral walls are present independently from 
the models and the fluid. Some differences between 
the mud and the clear water flows are evident. In 
the CWM the dry area behind the central obstacle 
is more reduced respect both the mud flows. The 
streamlines of the SPM model after the blocks are 
straight, very similarly to the case with one obstacle 
(Figure 9). About the TPM an increase of the depth 
of the solid phase is observed on side of the lateral 
blocks.  

At t=2.0 s (Figure 14), the presence of lateral 
obstacles produces a very large recirculation zone 
in front of the obstacles, in all the examined cases. 
The principal difference between the Single-Phase 
and Two-Phases models pertains to the shape of 
the dry zone past the central obstacle which is 
larger in SPM than in TPM. Differently the CWM 
predicts that the flow surrounds almost completely 
the central obstacle with a very small dry zone past 

it. 
Owing to the geometry of the chosen 2D test-

cases, the effects of bottom shear stress are very 
marginal and there is no forcing due to the slope. 
The above results, taken collectively, suggest that 
in such a condition the liquid and solid phases 
remain strongly coupled during the whole event, 
precluding any phase separation. Although the flow 
fields predicted by the two models present some 
differences, the essential features of the forces 
acting on the obstacles are similarly predicted by 
the single-phase and the two-phase models. 

3    Conclusion 

The present work numerically investigates the 
impact of a mud-flows on rigid obstacles. Two 
depth-integrated models based on different 
theoretical approaches have been employed. A 
Single-Phase Model (SPM) representing the slurry 
as a power-law fluid and a Two-Phase Model 
(TPM), which separately considers the liquid and 
the solid phases, have been considered. The main 
goal of the comparison is to understand if there are 
significant differences in the simulation results and 
specifically in the impact force estimation. 

Both 1D and 2D test cases have been 
considered. The 1D test case represents the collapse 
of a volume of saturated soil moving downstream 

 

 
Figure 14 Instantaneous flow depth distribution with streamlines superposed for Test 2 at t= 2.0 s for (a) Single-
Phase Model (SPM), (b) Two-Phase Model (TPM) and (c) Clear Water Model (CWM), (d) Liquid and (e) solid phase 
from Two-Phase Model (TPM).  
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in a deep slope channel which ends with a wall. In 
this condition, in which the combined action of 
slope and bottom shear stress is significant, the 
TPM shows in the downstream part of the wave a 
progressive separation of the solid and liquid 
phases. In terms of impact force, the solid phase 
contributes for only about 20% of the maximum 
total value. Appreciable differences in the 
estimation of both the wave celerity and the 
magnitude of the impact force are observed 
between the results of the two models. In particular, 
the peak value of the force of TPM is lower 
compared with the one of SPM probably for the 
combined effect of a smaller wave height and a 
reduction in the mixture bulk density due to the 
different dynamics of the solid and liquid phase.  

The 2D test case reproduces a mud wave 
originated from the sudden removal of a gate 
flowing on a horizontal bottom impacting on a 
single central rectangular rigid block. The geometry 
has been successively modified adding two half size 
obstacles symmetrically placed on both sides of the 
central block (Test 2). About the single obstacle 
(Test 1), the TPM does not predict phase separation 
and the estimated value of the peak force is slightly 
larger (~10%) than the one deduced through the 
SPM, while the time at which it occurs appears to 
be almost independent on the model. The presence 
of the solid phase produces only a slightly 
reduction of the celerity of the wave in the TPM 
model with respect to the turbulent clear water 
case, but in terms of force its contribute on the 
peak value is still small.  

With multiple obstacles (Test 2), the force 

acting on the central one is essentially unaffected 
by the presence of the lateral blocks. The 
longitudinal component of the force predicted by 
the two mud-flow models behaves similarly, while 
some differences are observed in the transversal 
component with the peak value of the SPM larger 
(~40%) than the TPM. Similarly to the Test 1, in 
the TPM model no phase separation is observed 
and the contribution of the solid to the maximum 
total force is about 40% for both the central and 
the lateral obstacles.  

The above results, taken collectively, suggest 
that in the presence of a phase separation the 
descriptions provided by the TPM and the SPM 
may lead to appreciable differences in the 
estimation of both the wave celerity and the 
magnitude of the impact force, which is 
overestimated by using a Single-Phase Model. With 
a different geometry, characterized in particular by 
a smaller bed slope, the liquid and solid phases 
remain strongly mixed. In this case, although the 
flow fields predicted by the two models present 
some differences, the essential features of the 
forces acting on the obstacles are similarly 
predicted by the two representations of the mixture. 
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