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Abstract: Change detection is a standard tool to 
extract and analyze the earth’s surface features from 
remotely sensed data. Among the different change 
detection techniques, change vector analysis (CVA) 
have an exceptional advantage of discriminating 
change in terms of change magnitude and vector 
direction from multispectral bands. The estimation of 
precise threshold is one of the most crucial task in 
CVA to separate the change pixels from unchanged 
pixels because overall assessment of change detection 
method is highly dependent on selected threshold 
value. In recent years, integration of fuzzy clustering 
and remotely sensed data have become appropriate 
and realistic choice for change detection applications. 
The novelty of the proposed model lies within use of 
fuzzy maximum likelihood classification (FMLC) as 
fuzzy clustering in CVA. The FMLC based CVA is 
implemented using diverse threshold determination 
algorithms such as double-window flexible pace 
search (DFPS), interactive trial and error (T&E), and 
3×3‒pixel kernel window (PKW). Unlike existing CVA 
techniques, addition of fuzzy clustering in CVA 
permits each pixel to have multiple class categories 
and offers ease in threshold determination process. In 
present work, the comparative analysis has 
highlighted the performance of FMLC based CVA over  

 
improved SCVA both in terms of accuracy assessment 
and operational complexity. Among all the examined 
threshold searching algorithms, FMLC based CVA 
using DFPS algorithm is found to be the most efficient 
method. 
 
Keywords: Change vector analysis (CVA); Fuzzy 
maximum likelihood classification (FMLC); Double-
window flexible pace search (DFPS); Interactive trial 
and error (T&E); Pixel kernel window (PKW) 

Introduction 

Change detection analysis plays a significant 
role in observing land use and land cover (LULC) 
earth surface variations with the help of remotely 
sensed multispectral imagery. Since past few 
decades, different change detection techniques 
have been developed and summarized for 
qualitative as well as quantitative measurement of 
spatial variations over multi-temporal scale (Lu  
et al. 2004; Singh & Talwar 2014). Amongst 
various algorithms, a conceptual extension of 
image differencing, termed as change vector 
analysis (CVA) algorithm is preferred due to 
existence of unique advantage of describing change 
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in terms of both change magnitude and vector 
direction (Malila 1980). CVA algorithm is found to 
be more appropriate under different conditions 
encountered in diverse range of change detection 
applications (Michalek et al. 1993; Allen and 
Kupfer 2000; Silva et al. 2003). Since past few 
decades, a series of developments has been made in 
CVA such as improved CVA (ICVA), CVA in 
posterior probability space, CVA using cross 
correlogram spectral matching (CCSM), median 
CVA (MCVA) and robust CVA (RCVA) (Allen and 
Kupfer 2000; Chen et al. 2003; Chen et al. 2011; 
He et al. 2013; Varshney et al. 2012; Thonfeld et al. 
2016). The efficacy of different CVA based change 
detection techniques has already been tested over 
mountainous region by various authors (Sharma  
et al. 2013; Singh & Talwar 2015a). 

As far as threshold selection is concerned, a 
number of threshold determination algorithms 
have been designed and implemented over CVA. 
Initially, choice of threshold was generally achieved 
by using manual empirical approaches based on 
training samples (Allen and Kupfer 2000). Latterly, 
double-window flexible pace search (DFPS), 
interactive trial and error (T&E) procedure based 
on mean and standard deviation were developed to 
compute a potential threshold value (Chen et al. 
2003; Fung and LeDrew 1988; He et al. 2013). 
They may require number of iterations to be 
performed over training sample by varying 
adjustment coefficient. Kontoes (2008) has 
proposed threshold algorithm based on 3×3‒pixel 
kernel window (PKW) to compute the change 
magnitude between any pixel (date-1) and the 
corresponding nine pixels positioned in the 
neighborhood (date-2). Varshney et al. (2012) have 
modified 3×3 PKW by introducing concept of 
discriminating change on the basis of standard 
deviation and mean. From practical consideration, 
no one threshold algorithm is fully autonomous, 
accurate and applicable in all circumstances. Each 
threshold algorithm has their own advantages as 
well as disadvantages and developed for specific 
application. The threshold searching algorithm 
should be effective, permits ease in its 
implementation, less dependent on user, less time 
consuming and robust against diverse magnitude 
values. Previous literature shows the comparison 
between diverse CVA based change detection 
algorithms and their associated threshold detection 

algorithms over mountainous region (Singh and 
Talwar 2015a, b). A summarization of existing 
threshold algorithms developed or implemented on 
CVA using different satellite sensors has been 
shown in Table 1. 

Another problem associated with CVA 
technique is the detection of pixels which falls 
under multiple class categories, termed as mixed 
pixels. The existence of mixed pixels depends upon 
pixel-width which may not be adequate enough to 
capture the fine details of earth parameters 
especially in case of mountainous region. Due to 
the presence of mixed pixels, it may be difficult to 
identify the exact category of pixels during change 
discrimination procedure and in results, downfall 
can be seen in accuracy assessment. Therefore, it is 
essential to separate mixed pixels before 
proceeding for further analysis. Keeping in mind 
these considerations, this research comes out with 
a methodology based on the capabilities of CVA in 
extraction of change and flexibilities of fuzzy 
clustering techniques. Fuzzy logic is an effective 
tool to identify association of each pixel with 
respect to concerned features by assigning 
membership of belongingness (Zhang and Foody 
1998; Singh and Talwar 2016). It has also been 
observed that fuzzy based classification is only a 
possible solution to characterize a pixel value based 
on their percentage of belongingness to specified 
classes (Foody and Atkinson 2002). 

The present study adopts a fuzzy approach to 
overcome existing problems in CVA with the use of 
fuzzy maximum likelihood classification (FMLC). 
This model has two advantages: (1) fuzzy as soft 
classification permits each pixel to have multiple or 
partial change categories and allows the extraction 
of mixed pixel information and (2) ease in selection 
of threshold value from limited range of change 
magnitude values present in fuzzy classified 
imagery. The main focus of this research is to study 
the response of fuzzy clustering on different 
threshold algorithms over mountainous region. 
From this perspective, the impact of FMLC based 
CVA (with fuzzy clustering) has been analyzed over 
well-accepted and commonly-used threshold 
searching models (DFPS, T&E and 3×3 PKW). 
Apart from its validations, the outcomes of FMLC 
based CVA are compared with improved SCVA 
(without fuzzy clustering) using same threshold 
algorithms.
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Table 1 A comparison between different threshold algorithms implemented over CVA as change detection techniques 

Notes: TM: Thematic Mapper; ETM+: Enhanced Thematic Mapper Plus; AWiFS: Advance Wide Field Sensor; MODIS: Moderate Resolution Imaging 
Spectroradiometer; LISS: Linear Imaging Self-Scanning Sensors; LULC: Land use and land cover; VI: Vegetation Index. 

 
 

 

Algorithms Characteristics Merits Demerits Data and study area 

Double-window 
flexible pace search 
(DFPS)  

1. Require two windows (internal & 
external) and search parameter to 
compute threshold (TV). 
2. Upper (UL) and lower limits (LL) 
provided to search TV within a 
specified range. 

1. Less dependent on user experience 
(Require user knowledge only in sample 
selection phase). 
2. Search can be performed within 
specified limit and at any decimal 
points. 

1. Consume more time if the 
training sample doesn’t meet 
predefined criteria. 
2.  Sometime unable to fulfill 
criteria. 

MODIS over mountainous 
region (Singh and Talwar 
2015b, 2016); TM over LULC 
(Chen et al. 2003); AWiFS 
over rugged terrain (Sharma 
et al. 2012) 

3×3-pixel kernel 
window (PKW) 

1. Considered pixel’s geographic 
neighborhood as 3×3-PKW 
2. Require a reference pixel along 
with 3×3-pixel window. 

1. Overcome the problem of erroneously 
identified as ‘change’ pixels from 
neighboring pixels. 

1. It is difficult to cover all pixels 
in window. 
2. Requirement of user confidence 
as decision making tool. 

Landsat TM/ ETM+ over 
fragmented landscape 
(Kontoes 2008) 

Interactive Trial 
and error (T&E) 

1. Based on standard deviation (σ), 
mean (µ). 
2. In addition, an adjustment factor 
(λ) is involved. 

1. Avoid the situation where erroneously 
pixels are identified due to spatial 
resolution. 
2. Avoid error due to misclassification. 

1. Consume more time. 
2. At each step of λ, threshold need 
to be computed. 

MODIS over mountainous 
region (Singh and Talwar 
2015b); MODIS using VI 
(Chunyang et al. 2013) 

3×3 PKW based on 
standard deviation 
& mean 

1. Selection of threshold based on
standard deviation (σ), mean (µ) 
and 3×3 window. 

1. Add the merits of both 3×3 kernel and 
T&E technique.  

1. Requirement of user knowledge 
to identify sample and vary 
adjustment factor (λ). 

Landsat TM/ ETM+ over 
LULC (Varshney et al. 2012)

Inverse triangular 
function (ITF) 
 

1. The standard deviation (σ), mean 
(µ) of each principal component of 
difference image is calculated. 

1. Takes care of the redundant 
information in the given bands. 
2. Avoid the misclassification of pixels 
due to spatial resolution. 

1. Limited applicability of ITF 
algorithm. 

LISS-III over LULC 
(Baisantry et al. 2012) 

Empirical 
procedures 

1. Selection of threshold on the 
basis of reference data. 

1. less complexity. 
2. Require limited parameters to 
compute TV. 

1. Requirement of analyst’s expert 
knowledge about the study area. 

MODIS over western 
Himalaya (Singh and Talwar 
2015b); TM (Nackaerts et al. 
2005) 

Otsu thresholding

1. Minimize the intra-class variance 
and maximize the inter-class 
variance of distributions of bimodal 
histograms. 

1. Robust against large range magnitude 
values. 

1. Less sensitive against extensive 
variation of global distributions of 
object. 

RapidEye and Kompsat-2 
over LULC (Thonfeld et al. 
2016) 

1393
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1    Study Area and Dataset 

The present study area, shown in Figure 1, is 
situated in the lower zone of western Himalaya, 
Lahul, Himachal Pradesh, India. The geographical 
location lies between latitudes 32°12ᇱ − 	33°24ᇱ	N 
and longitudes 	76°38ᇱ − 	77°73ᇱ	E . This region is 
characterized by very low temperatures and heavy 
snowfall. The MODIS dataset has been used in 
present work that have sufficient dynamic range 
and spectral coverage to measure the reflected 
energy from the Earth’s surface in 36 spectral 
narrow bands (0.405μm to 14.385μm) with wide 
scanning swath width of 2330 km. A digital 
elevation model (DEM) of corresponding area is 
obtained from Advanced Space borne Thermal 
Emission and Reflection Radiometer (ASTER) to 
generate illumination image, slope and aspect 
maps of corresponding study site. The slope value 
varies from 1° to 85° with an average of 26° and 
aspect value varies from 0° to 360° with mean 
aspect equals to 182°. The elevation ranges 
stretched from 2377 m to 6576 m above mean sea 
level (AMSL) with an average of 4270 m AMSL. 

2    Methodology  

Preliminary processing (geometric, 
radiometric and topographic corrections) are 
essential to be performed on digital number (DN) 
imagery to generate reflectance imagery before any 
further considerations. The geometric correction 
was performed using 50 ground control points 
(GCP) with second order polynomial 
transformation to preserve root mean square error 
(RMSE) less than one (Mather 2004). The spectral 
reflectance ܴᇱ	 from the sensor radiance is 
implemented as follow (Mishra et al. 2009b; 
Sharma et al. 2013): ܴᇱ = 		 ௅ʎௗಶೄ	మ஺బ	 ௖௢௦ ೥			                               (1) 

where ߠ௭ is solar zenith angle between sun rays and 
zenith direction; ݀ாௌ	is distance between earth and 
sun;	ܮʎ is the corrected spectral radiance; ܣ଴	 is the 
mean solar exo-atmospheric spectral irradiance of 
MODIS bands (Mishra et al. 2009b). Afterwards, 
slope match technique as topographic correction 
was implemented over reflectance imagery to 
overcome the effects of different illumination that 

existed due to rugged topography of Himalaya 
(Nichole 2006). The topographic correction is 
selected on the basis of comparative analysis 
performed over mountainous region by various 
authors (Mishra et al. 2009a; Singh et al. 2011). 
The slope match topographic correction S௠ᇱ  is 
computed as follow: ܵ௠ᇱ 	= ቄሾܴᇱ + (ܴ௠௔௫ᇱ 	− ܴ௠௜௡ᇱ )ሿ × ቀ௖௢௦ ௜ೞೌ	ି௖௢௦ ௜	௖௢௦ ௜ೞೌ ቁ 	×ቂ(ௌభೌିேೌ	)	(ேభೌିேೌ)ቃቅ                                                  (2) 

where	ܴᇱ	is the reflectance imagery; ܴ௠௔௫ᇱ  and ܴ௠௜௡ᇱ  
are the maximum and minimum spectral 
reflectance values, respectively; cos ݅ and cos ݅௦௔ are 
scaled (0-255) illumination imagery and scaled (0-
255) sun-facing illuminated slopes instead of 
overall mean, respectively; The ௔ܰ	 and ௔ܰଵ  are 
north-aspect and north-aspect after first stage 
normalization, respectively; and ܵ௔ଵ is south-aspect 
after first stage normalization. Figure 2a and 2b are 
represented the topographically corrected 
reflectance imagery of date-1 and date-2, 
respectively. The overall methodology of proposed 
work is divided into four parts: (a) fuzzy logic; (b) 
change magnitude; (c) threshold determination 
and (d) change direction. 

2.1 Fuzzy based maximum likelihood 
classification (MLC) 

The fuzzy based MLC is implemented over 
topographically corrected imagery to quantify the 
pixels which are allocated to more than one class 
category with certain degree of belonging (Foody 
2002). Contrarily, conventional methods are based 
on hard classification in which a pixel is 
dedicatedly assigned to one category only. 
Sometimes, the crisp values between the change 
and no-change boundaries may not be accurately 
visualized and in results, affect the accuracy. To 
overcome such problems, fuzzy logic delivers a 
realistic solution to identify the overlapped clusters 
(Mishra et al. 2012). Over selected study site, there 
may be the possibility of a pixel to lie within two or 
more class categories with certain degree of 
belongingness. Therefore, deriving a fuzzy 
classification is essential for such pixels to describe 
the change as a degree of intensely associated with 
their equivalent class category as follow (Melesse 
and Jordon 2002): 
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(݆)ܨ = ∑ ∑ ∑ ௐೢ ೣ஽ೢೣ೤(௝)	௟௬ୀ଴௧௫ୀ଴௧௪ୀ଴ 		                  (3) 

where ܨ(݆) is the total weighted distance of window 
for ݆݄ݐ  class, ݓ  is a row index of window, ݔ  is a 
coloumn index of window,	ݕ is layer index of fuzzy 
set, ݐ is size of window, ݈ is number of fuzzy layers 
considered, ܦ௪௫௬(݆)  is distance file for ݆݄ݐ  class, 
and ௪ܹ௫	 is weight table for window. The 
convolution of fuzzy generates a layer classified 
imagery by computing the total weighted inverse 
distance. Further, it allocates midpoint pixel in the 
class category with the largest total inverse 
distance summed over the whole set of fuzzy 
classified layers (ERDAS 1999). 

2.2 Change vector analysis (CVA) 

CVA is a multivariate technique which accepts 
an array of spectral bands and distinguishes the 
changes in two primary components: (a) vector 
direction; and (b) change magnitude (Malila 1980). 

CVA offers various advantages over exiting 
algorithms such as: (a) processing number of 
spectral bands simultaneously; (b) relaxation from 
spatial spectral errors generally inherent in multi-
temporal classification; and (c) detection of 
changes in different terrain types and conditions 
(Johnson and Kasischke 1998). The overall 
operation of CVA is divided into three portions: (a) 
determination of change magnitude using 
Euclidean distance between vector end points in 
spectral space, (b) choice of optimum threshold 
value based on manual or semiautomatic 
procedures and (c) identify the change vector 
direction based on cosine direction to categorize 
the change. The change magnitude หܪሬሬԦห is computed 
on the basis of Euclidean distance from fuzzy 
classified imagery as follow: 

ሬሬԦܪ = 	൞(ݕଵ − ଵݕ)ଶ)ଵݕ − ଵݕ)…ଶ)ଶݕ − ଶ)௡ൢݕ = 	൞
 ௛௡ൢ                 (4)ݕ…௛ଶݕ௛ଵݕ

 
Figure 1 Study location (a) Lahul, Himachal Pradesh, India (b) MODIS sensor satellite imagery. 

 
Figure 2 Topographically corrected (a) date-1 (Pre) imagery (b) date-2 (Post) imagery. 
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หܪሬሬԦห = ሾ∑ ௜ଶ௡௜(௛௜ݕ) ሿଵ ଶൗ                                    (5) 

where ݕଵ and ݕଶ represent the pixel values of date-1 
and date-2 imagery, respectively, ݕ௛ଵ  represents 
difference of two multi-temporal pixels located at 
same geographic coordinates and ݊ is total number 
of spectral bands in imagery. 

Figure 3a and 3b have been represented 
change magnitude imagery computed from 
improved SCVA and FMLC based CVA, respectively. 
In magnitude imagery, brighter or higher value of a 
pixel represents maximum change while darker 
region or low value of a pixel represents minimum 
change in spectral space. 

2.3 Threshold Algorithms 

Once the change magnitude imagery is 
computed, change and no-change information can 
be extracted from it using threshold determination 
algorithm. Threshold procedure is necessary to be 
implemented on change magnitude imagery 
because unchanged pixel falls within a category of 
change pixels due to existence of some factors such 
as improper normalization and noise (Johnson and 
Kasischke 1998). The threshold procedures are 
become much more complicated when more than 
two spectral bands are involved. To study the 
response of different threshold algorithms over 
FMLC based CVA, well developed models such as 
interactive T&E measures (He at al. 2013), DFPS 
(Chen et al. 2003) and 3×3 PKW threshold 
(Kontoes 2008) algorithms are implemented in 
this study. 

2.3.1 Double-window flexible pace search 
(DFPS) 

Chen et al. (2003) proposed DFPS threshold 
algorithm acted as a semiautomatic process that 
requires certain degree of image analyst’s skill set. 

In this algorithm, the initial step is to select a 
sample from magnitude imagery based on 
predefined parameters such: (a) sample must 
covered all possible types of changes; (b) it must 
include only change pixels; and (c) avoid the 
extreme low values of magnitude imagery. 
However, it is observed that under some conditions, 
it is not possible to cover all types of change 
categories in a sample and hence, multiple samples 
are required to be analyzed.  FMLC based CVA 
overcomes same problem up to a great extent by 
selecting a sample based on visual interpretation 
which comprises maximum fuzzy change classes or 
layer index. In layer index, a pixel containing 
maximum fuzzy layers is represented by higher 
value of change magnitude while in case of 
minimum fuzzy layers, corresponding pixel is 
represented by lower value of change magnitude 
(Figure 3b). The DFPS algorithm has been 
implemented over change magnitude imagery to 
discriminate the change and unchanged (Figure 
4a). 

Steps to execute the DFPS algorithm: 
1) Select the training samples based on 

aforementioned criteria from change magnitude 
imagery. 

2) Separate the sample into two parts: (a) 
outer window and (b) inner window from improved 
SCVA (Figure 5a) and FMLC based CVA (Figure 
5b). 

3) Set lower limit (ܮ௅)  and upper limit ( ௅ܷ) 
manually within a range from minimum to 
maximum value of change magnitude and specify 
the step size ( ௌܵ)	based on user confidence (ߣ) as 
follow: ܵ௦ = ௎ಽି௅ಽఒ                                   (6) 

4) At each step of nominated threshold value ( ௏ܶ) , achievement rate (ܣோ)  of corresponding 

 
Figure 3 Change magnitude imageries from (a) improved SCVA (b) FMLC based CVA. 
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( ௏ܶ)	is computed as follow: ܣோ(%) = 	 (ூ೎ିா೎)ூ೟                            (7) 

where ܫ௖  and ܧ௖  represented number of change 
pixels occurred in internal window and external 
window, respectively and ܫ௧  is the total number 
pixels inside the internal training window.  

1) Increase the step size ( ௌܵ)	up to required 
decimal points within the specified ranges of (ܮ௅) 
and ( ௅ܷ) as shown in Table 2. 

2) When highest ܣோ  is achieved, stop the 
iteration and apply specific ௏ܶ to change magnitude 
imagery to generate binary imagery (‘1’ value to 
represent change and ‘0’ value to represent no-
change). 

 
Figure 4 Comparison of CVA based threshold determination algorithms applied on fuzzy classified imageries (a) 
DFPS technique (b) T&E technique (c) 3×3 PKW technique. 

 
Figure 5 Selected of training sample from (a) DFPS algorithm with improved SCVA (b) DFPS algorithm with FMLC 
based CVA (c) 3×3 PKW with improved SCVA (d) 3×3 PKW with FMLC based CVA. 
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Table 2 and 3 shown the results of selected 
threshold value based on achievement rate using 
DFPS algorithm on FMLC based CVA and 
improved SCVA, respectively. Figure 6a and 6d 
represented the binary imagery generated from 
FMLC based CVA and improved SCVA, respectively. 

2.3.2 Interactive Trial and Error (T&E) 

The T&E procedure introduced by Fung and 
Ledrew (1988) in which a series of threshold values 
are considered on the basis of standard deviation 
 and mean (µ) to discriminate the change pixels (ߪ)
from unchanged pixels. A set of training samples 
are required to be selected and they must also 
include all types of change categories available in 
imagery. In order to formulate interactive T&E, 
three parameters, entitled as standard deviation 
(σ), mean (µ) and adjustment coefficient (λ) are 
computed from training samples (He et al. 2013). 
The value of adjustment coefficient can be initiated 
from 0.1 until the maximum value of threshold 
reaches to the maximum value change magnitude. 
The T&E algorithm has been implemented over 
fuzzy classified magnitude imagery as shown in 
Figure 4b. 

Steps to execute T&E algorithm 
1) Select a set of training samples to cover all 

types of change categories available in selected 
study site. 

2) Extract the values of standard deviation (ߪ) 
and overall mean (µ) from nominated training 
samples. 

3) Initially, set the adjustment parameter (λ) at 
value 0.1 and implement as follow: 

௏ܶ = μ + ߣ) ×  (8)                          (ߪ

4) In subsequent iterations, the value of ߣ is 
increased at each step by 0.1 on the basis of user 
confidence and continue the iteration until the ௏ܶ 
reaches to its maximum value. 

5) At each step, binary (change and no-change) 
imagery is computed for specific ௏ܶ and compared 
with reference imagery to build an error matrix. 

6) At last, potential threshold correspond to 
maximum kappa coefficient is assigned to change 
magnitude imagery. 

Figure 6b and 6e represented the binary 
imagery generated from FMLC based CVA and 
improved SCVA, respectively. 

2.3.3 3×3‒pixel kernel window (PKW) 

Kontoes (2008) has proposed 3×3–PKW 
algorithm to overcome the problem of 
overestimation because it is observed that spectral 
properties of the no-change pixels are effected by 
the neighboring change pixels. In this algorithm, 
Euclidean distance is computed between a 
reference pixel on date-1 imagery and 

Table 2 Results of selection of threshold value based on achievement rate in DFPS thresholding algorithm with FMLC 
based CVA 

UL =80, LL = 20 
SS = 20 

UL =60, LL = 20 
SS = 10 

UL =55, LL = 35
SS = 5 

UL =49, LL = 45
SS = 1 

UL =46.5, LL = 46.1 
SS = 0.1 

UL =46.29, LL = 46.25
SS = 0.01 

TV AR (%) TV AR (%) TV AR (%) TV AR (%) TV AR (%) TV AR (%) 
20 15.61 20 15.61 35 46.47 45 46.47 46.1 46.47 46.25 46.47 
40 46.47 30 46.47 40 46.47 46 46.47 46.2 46.47 46.26 46.47 
60 18.75 40 46.47 45 46.47 47 50 46.3 50 46.27 46.47 
80 18.75 50 50 50 50 48 50 46.4 50 46.28 46.47 
-- -- 60 18.75 55 50 49 50 46.5 50 46.29 50 

Table 3 Results of selection of threshold value based on achievement rate in DFPS thresholding algorithm with 
improved SCVA 

UL =80, LL = 20 
SS = 20 

UL =70, LL = 30 
SS = 10 

UL =65, LL = 50
SS = 5 

UL =64, LL = 56
SS = 2 

UL =46.5, LL = 46.1 
SS = 0.1 

UL =46.29, LL = 46.25
SS = 0.01 

TV AR (%) TV AR (%) TV AR (%) TV AR (%) TV AR (%) TV AR (%) 
20 46.87 30 50 50 59.37 56 59.37 59.1 59.37 59.26 59.37 
40 54.83 40 54.83 55 59.37 58 59.37 59.2 59.37 59.27 59.37 
60 59.37 50 59.37 60 64 60 60.93 59.3 60.93 59.28 59.37 
80 28.12 60 64 65 46.87 62 53.12 59.4 60.93 59.29 59.37 
-- -- 70 28.12 -- -- 64 51.56 59.5 60.93 59.30 60.93 

Notes: UL, Upper limit; LL,  lower limit; SS, Step size; TV, threshold value; AR,  achievement rate. 
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corresponding 3×3‒pixel window situated in the 
immediate neighborhood of predefined pixel on 
date-2 imagery. Moreover, a coefficient is required 
to be computed based on user confidence that is 
related to the number of no-change pixels occurred. 
Varshney et al. (2012) suggested another 
enhancement in which threshold value is evaluated 
on the basis of mean (µ) and standard deviation (σ) 
of specified pixel, and (3×3) kernel window. The 
3×3‒PKW algorithm has been implemented on 
fuzzy classified magnitude imagery as shown in 
Figure 4c. 

Steps to execute 3×3–PKW algorithm 
1) Select a reference pixel representing only 

change area from date-1 and on the other end, 
select a corresponding kernel window of 3×3‒pixel 
size from date-2 as shown in Figure 5c and 5d for 
SCVA and FMLC based CVA, respectively. 

2) Compute the change magnitude of reference 
pixel as well as 3×3 PKW. 

3) Identify the standard deviation (σ) as well 
as mean (µ) from reference pixel and 3×3-pixel 
kernel window magnitudes. 

4) Compute the threshold value ( ௏ܶ) according 
to Eq.(8) and adjustment factor (ߣ) is computed 
based on user confidence. 

5) Check the number of pixels detected inside 
the window: if it is more than five, then the 

threshold value ( ௏ܶ) can be used to generate binary 
image otherwise the value of reference pixel can be 
increased and repeat the first five steps. 

6) When the aforementioned criteria (step 5) is 
achieved, then the pixels in change magnitude 
imagery having value more than threshold value ௏ܶ 
can be replaced with the change and rest of the 
pixels are remain unchanged. 

Figure 6c and 6f represented the binary 
imagery generated from FMLC based CVA and 
improved SCVA, respectively. 

2.4 Change vector direction 

In order to determine ‘from-to’ change, change 
vector direction can be computed in different ways 
such as cosine based (Chen et al. 2003), direction 
in the polar domain (Allen and Kupfer 2000), 
principal component analysis (PCA) in the multi-
temporal domain (Lambin and Strahler 1994), 
positive and negative shifts in spectral space 
(Nackaerts et al. 2005) and sector coding based 
change category (Malila 1980). The direction 
cosines technique based on cosine angles is 
implemented as an angle function that lies between 
change vector and individual spectral response to 
recognize the different change categories. The 
change direction (ߠ ) may also be identified as 

 
Figure 6 CVA based binary (Change and no-change) imageries computed from (a) DFPS with FMLC based CVA (b) 
T&E with FMLC based CVA (c) 3×3 PKW with FMLC based CVA (d) DFPS with improved SCVA (e) T&E with 
improved SCVA (f) 3×3 PKW with improved SCVA. 
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vectors ܪሬሬԦ = ,ଵߠ	ݏ݋ܥ) ,ଶߠ	ݏ݋ܥ … ,  ௜) and directionߠ	ݏ݋ܥ
angles (ߠଵ, ,ଶߠ … , ௜ߠ .௜), respectivelyߠ = ଵିݏ݋ܥ	 ൬௬೓೔หுሬሬԦห൰                              (9) 

where ݕ௛௜  represents difference of two multi-
temporal pixels located at same geographic 
coordinates. 

Afterwards, the cosine direction in terms of 
change vector are stacked together to generate a 
multidimensional change direction imagery. 
Minimum-distance classification is considered to 
discriminate the category of change because their 
features and categories are already identified. 
Moreover, similarity measure is used as a distance 
measure between distributed functions in 
Minimum-distance classification (Varshney et al. 
2012). Figure 7 represented the change map 
imagery computed from FMLC based CVA and 
improved SCVA using different threshold 
algorithms. 

3    Results and Discussions 

3.1 Visual interpretation and accuracy 
assessment 

Figures 6a to 6c are representing the change 
and no-change imagery generated from three 
threshold algorithms (DFPS, T&E and 3×3 PKW) 
implemented over FMLC based CVA and on 
Figures 6d to 6e are representing change and no-
change imagery generated from same algorithms 
implemented over improved SCVA. White and 
black tones in the resultant images (Figure 6) 
indicate change and no-change pixels, respectively 
in the region. These images are assessed with the 
help of error-matrix as standard assessment tool 
that includes various parameters such as overall 
accuracy (OA) to represent correctness of change 
map, commission error (CE) to identify 
erroneously included pixel into different category, 
kappa coefficient (Kc) that convey the accuracy of 
classification after adjustment for chance, producer 
accuracy (PA) and user accuracy (UA) representing 
individual class-category accuracies. Table 4 and 5 
represent the results of error matrixes generated 
from change/no-change mask imagery computed 
from different threshold determination techniques 
(DFPS, T&E and 3×3 PKW). 

The DFPS algorithm using FMLC based CVA 
achieved highest accuracy in OA (89.45%), PA 
(90.4% in change and 88.55% in no-change 
category), UA (88.28% in change and 90.63% in 
no-change category), overall Kc (0.78) and least CE 
ranges from 9.3% to 11.71% as compare to other 
threshold algorithms. Whereas DFPS algorithm 
using improved SCVA also achieved highest 
accuracy in OA (88.28%), PA (85% in change and 
92.24% in no-change category), UA (92.97% in 
change and 83.59% in no-change category), overall 
Kc (0.76) and least CE ranges from 7% to 16.04% 
as compare to other threshold algorithms. On the 
other hand, category change maps from FMLC 
based CVA and improved SCVA are shown in 
Figures 7a to 7c and Figures 7d to 7e, respectively 
for different threshold algorithms (DFPS, T&E and 
3×3 PKW). Table 6 represents the results of 
accuracy assessment generated from change 
category maps computed from FMLC based CVA 
and improved SCVA for different threshold 
algorithms (DFPS, T&E and 3×3 PKW). The DFPS 
algorithm using FMLC based CVA achieved highest 
accuracy (OA=88.28% as compare to other studies. 
According to visual interpretation and accuracy 
procedures, very less difference is observed 
between change and no-change mask imagery from 
DFPS and 3×3 kernel window while T&E change 
mask shown much difference than other 
algorithms in both FMLC based CVA and improved 
SCVA techniques.  According to the accuracy 
assessment, DFPS performed well enough in case 
of both FMLC based CVA and improved SCVA but 
better accuracy achieved from FMLC based CVA. 

3.2 Relative performance of FMLC based 
CVA and improved SCVA over different 
threshold algorithms 

To prevent any bias caused by threshold 
algorithm, FMLC based CVA and improved SCVA 
are implemented using three different threshold 
algorithms: (a) DFPS, (b) T&E and (c) 3×3 PKW. A 
comparison analysis based on visual interpretation 
and accuracy assessment has represented a 
noticeable difference between FMLC based CVA 
and improved SCVA.  In details, DFPS and 3×3 
PKW represented that overall distribution of 
change and no-change pixels are similar in visual 
and accuracy results while in case of T&E, the 
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distribution of change pixels is not up to an extent. 
The reasons behind the existence of such results 
are due to the lower threshold value detected in 
DFPS and 3×3 PKW algorithm whereas in case 
T&E algorithm, higher threshold value detected. In 

change category map, imagery computed from 
DFPS algorithms are represented better accuracy 
in both of FMLC based CVA (OA=88.28%, Kc=0.78) 
and improved SCVA (OA=85.16%, Kc=0.74) with 
respect to other algorithms. 

Table 4 Error-matrixes for assessing the threshold value suing different threshold determination techniques

Techniques 
Classified data  
(Feb-2011) 

Reference data (Nov-2010)
Commission 
error (%) Change No-change Column 

total 

DFPS with 
FMLC based 
CVA 

Change 113 15 128 11.71
No-change 12 116 128 9.3 
Row total 125 131 256  
Commission error (%) 9.6 11.45  
Overall accuracy = 89.45%, Kappa coefficient = 0.7891

T&E with FMLC 
based CVA 

Change 112 16 128 12.5 
No-change 25 103 128 19.5 
Row total 137 119 256  
Commission error (%) 18.2 13.44  
Overall accuracy = 83.98%, Kappa coefficient = 0.6797

3×3 PKW with 
FMLC based 
CVA 

Change 119 9 128 7.03
No-change 21 107 128 16.40
Row total 140 116 256  
Commission error (%) 15 7.75  
Overall accuracy = 88.28%, Kappa coefficient = 0.7656

DFPS with 
improved SCVA 

Change 111 17 128 13.2 
No-change 13 115 128 10.15
Row total 124 132 256  
Commission error (%) 10.48 12.87  
Overall accuracy = 88.28%, Kappa coefficient = 0.7656

Trial & Error 
with improved 
SCVA 

Change 110 18 128 14.06
No-change 21 107 128 16.4 
Row total 131 125 256  
Commission error (%) 16.03 14.4  
Overall accuracy = 84.77%, Kappa coefficient = 0.6953

3×3 PKW with 
improved SCVA 

Change 111 17 128 13.28
No-change 24 104 128 18.75
Row total 135 121  
Commission error (%) 17.77 14.04 256  
Overall accuracy = 83.98%, Kappa coefficient = 0.6797

Table 5 Results of error matrixes generated from change and no-change imageries of different threshold 
determination techniques 

 Change No-change Overall Assessment 
Threshold 
determination 
techniques 

PA (%) UA (%) Kc PA (%) UA (%) Kc OA (%) Kc CE୫୧୬(%) CE୫ୟ୶(%) 

DFPS with FMLC 
based CVA 90.4 88.28 0.77 88.55 90.63 0.8 89.45 0.78 9.3 11.71 

T&E with FMLC 
based CVA 82.22 86.72 0.71 85.95 81.25 0.64 83.98 0.67 13.28 18.75 

3×3 PKW with 
FMLC based CVA 

89.52 86.72 0.74 87.12 89.84 0.79 88.28 0.76 10.15 13.2 

DFPS with 
improved SCVA 85 92.97 0.84 92.24 83.59 0.70 88.28 0.76 7.0 16.04 

Trial & Error with 
improved SCVA 83.97 85.94 0.71 85.6 83.59 0.67 84.77 0.69 14.06 16.03 

3×3 PKW with 
improved SCVA 81.75 87.50 0.73 86.5 80.47 0.63 83.98 0.67 12.5 19.5 
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It is inferred that FMLC based CVA using 
DFPS algorithms performed very well both in 
qualitative and quantitative analysis as compare to 
improved SCVA. Note that, FMLC based CVA 
generates change magnitude imagery having 
limited number of magnitude range and such 
limited range helps the user to easily identify the 
all types of changes in the training sample. This 
simplicity makes the threshold algorithm more 
efficient and delivers ease in obtaining training 

samples from change magnitude imagery. It should 
also be noteworthy that all the threshold 
algorithms are implemented over topographically 
corrected mountainous region imagery because the 
pixels fallen under topographic effects such as 
shadow create problem in allocation of specific 
change category to a pixel. Therefore, topographic 
corrections become important to be implemented 
especially over mountainous region remotely 
sensed data to maintain the least commission

errors and maximum accuracy. 

3.3 Conclusions  

In this study, FMLC based CVA technique has 
been developed in order to consider mixed pixels 
unlike wise in existing CVA based algorithm, a 
change pixel is assigned to a specific class only. For 
theoretical and practical reflections, the integration 
of fuzzy in CVA is more suitable and realistic 
towards situations where overlapping clusters are 
existed. For any change detection technique, 
accuracy of change map is highly depended upon 
the algorithm used for threshold searching. To 
assess the proposed technique, experiments are 
carried out using three well known threshold 
algorithms (DFPS, T&E and 3×3 PKW) and 
compared their results with existing improved 

SCVA (without fuzzy clustering) technique. The 
proposed technique is found to be imperious in 
terms of both accuracy as well as visual conformity 
as compare to improved SCVA. According to the 
findings, it is also concluded that incorporation of 
fuzzy logic and CVA based change detection model 
made a prominent and theoretically, well-justified 
algorithm especially in terms of threshold 
searching.  

Major benefits of proposed technique are 
involved: (a) assigning multiple class categories to 
a pixel based on their belongingness; (b) ease in 
threshold procedures; and (c) make the full use of 
spatial information. The existing CVA based 
change detection algorithms does not provide 
solution in terms of detection of mixed pixels and 
conformity regarding threshold searching 
procedure.  Further enhancements towards 

 
Figure 7 CVA based change map imageries computed from (a) DFPS with FMLC based CVA (b) T&E with FMLC 
based CVA (c) 3×3 PKW with FMLC based CVA (d) DFPS with improved SCVA (e) T&E with improved SCVA (f) 
3×3 PKW with improved SCVA. 
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proposed technique may comprise the 
identification of mixed pixels by the integration of 
subpixel classification. Although selection of 
potential threshold is a topic of continuous 

research so, some future pursuits could be focused 
on problem of threshold searching by using 
optimization methods. 
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Table 6 Accuracy assessment for different threshold determination techniques

Techniques Categories Reference 
Pixels 

Classified
pixels 

Correct
pixels 

Incorrect
pixels 

PA UA Kc 

DFPS with 
FMLC based 
CVA 

Soil to snow 156 158 145 13 92.95 91.77 0.78
Snow to mix 2 - - - - - -
Soil to mix 48 40 35 5 72.92 87.50 0.84
Mix to snow 47 58 46 12 97.87 79.31 0.74
Others 3 - - - - - -
Total pixels 256 256 226 30   
Overall accuracy = 88.28%, Kappa coefficient = 0.7881

T&E with 
FMLC based 
CVA 

Soil to snow 152 158 141 17 92.76 89.24 0.73
Snow to mix 1 - - - - - -
Soil to mix 53 40 36 4 67.92 90 0.87
Mix to snow 47 58 46 12 97.87 79.31 0.74
Others 3 - - - - - -
Total pixels 256 256 223 33   
Overall accuracy = 87.11%, Kappa coefficient = 0.7696

3×3 PKW with 
FMLC based 
CVA 

Soil to snow 127 136 119 17 93.7 87.5 0.75
Soil to mix 35 29 24 5 68.57 82.76 0.80
Mix to snow 92 91 78 13 84.78 85.71 0.77
Unclassified 2 - - - - - -
Total pixels 256 256 221 35  
Overall accuracy = 86.33%, Kappa coefficient = 0.7695

DFPS with 
improved 
SCVA 

Soil to snow 138 154 129 25 93.48 83.77 0.64
Snow to mix 13 2 2 - 15.38 100 1
Soil to mix 30 30 25 5 83.33 83.33 0.81
Mix to snow 69 70 62 8 89.86 88.57 0.84

 
Others 6 - - - - - -
Total pixels 256 256 218 38  
Overall accuracy = 85.16%, Kappa coefficient = 0.7475

Trial & Error 
with improved 
SCVA 

Soil to snow 150 173 143 30 95.33 82.66 0.58
Snow to mix - - - - - - -
Soil to mix 45 22 18 4 40 81.82 0.77
Mix to snow 56 61 48 13 85.71 78.69 0.72
Unclassified 5 - - - - - -
Total pixels 256 256 209 47  
Overall accuracy = 81.64%, Kappa coefficient = 0.6580

3×3 PKW with 
improved 
SCVA 

Soil to snow 136 152 130 22 95.59 85.53 0.69
Soil to mix 36 21 18 3 50 85.71 0.83
Mix to snow 81 83 65 18 80.25 78.31 0.68
Others 3 - - - - - -
Total pixels 256 256 213 43  
Overall accuracy = 83.20%, Kappa coefficient = 0.70



J. Mt. Sci. (2017) 14(7): 1391-1404 

 

 1404

References

Allen TR, Kupfer JA (2000) Application of spherical statistics to 
change vector analysis of Landsat data: Southern Appalachian 
spruce-fir forests. Remote Sensing of Environment 74(3): 
482-493. DOI: 10.1016/S0034-4257(00)00140-1 

Baisantry M, Negi DS, Manocha OP (2012) Change vector 
analysis using enhanced PCA and inverse triangular function-
based thresholding. Defence Science Journal 62(4): 236-242. 
DOI: 10.14429/dsj.62.1072 

Chen J, Gong, P, He C, et al. (2003) Landuse/ land-cover change 
detection using improved change-vector analysis. 
Photogrammetric Engineering and Remote Sensing 69(4): 
369-379. DOI:10.14358/PERS.69.4.369 

Chen J, Chen X, Cui X et al. (2011) Change vector analysis in 
posterior probability space: a new technique for land cover 
change detection. IEEE Geo-science and Remote Sensing 
Letters 8(2): 317-321. DOI: 10.1109/LGRS.2010.2068537 

He C, Zhao Y, Tian J, et al. (2013) Improving change vector 
analysis by cross-correlogram spectral matching for accurate 
detection of land-cover conversion. International Journal of 
Remote Sensing 34(4): 1127-1145. DOI: 10.1080/01431161. 
2012.718458 

ERDAS (1999) ERDAS: Field Guide. ERDAS Inc., Atlanta, 
Georgia, p 671. 

Fung T, LeDrew E (1988) The determination of optimal 
threshold levels for change detection using various accuracy 
indices. Photogrammetric Engineering & Remote Sensing 54: 
1449-1454. 

Foody GM, Atkinson PM (2002) Uncertainty in remote sensing 
and GIS, John Wiley & Sons. DOI: 10.1002/0470035269 

Johnson RD, Kasischke ES (1998) Change vector analysis: a 
technique for the multitemporal monitoring of land cover and 
condition. International Journal of Remote Sensing 19: 411-
426. DOI: 10.1080/014311698216062 

Kontoes CC (2008) Operational land cover change detection 
using change vector analysis. International Journal of Remote 
Sensing 29(16): 4757-4779. DOI: 10.1080/0143116080196 
1367 

Lambin EF, Strahler AH (1994) Change-vector analysis in multi-
temporal space: a tool to detect and categorize land-cover 
change processes using high temporal-resolution satellite data. 
Remote Sensing of Environment 48(2): 231-244. DOI: 
10.1016/0034-4257(94)90144-9 

Lu D, Mausel P, Brondizio E, et al. (2004) Change detection 
techniques. International Journal of Remote Sensing 25(12): 
2365-2407. DOI: 10.1080/0143116031000139863 

Malila WA (1980) Change vector analysis: an approach for 
detecting forest changes with Landsat, In Proceedings of the 
6th Annual Symposium on Machine Processing of Remotely 
Sensed Data, 3–6 June 1980, West Lafayette, IN (West 
Lafayette: Purdue University), 326-335. 

Mather PM (2004) Computer processing of remotely-sensed 
images: an introduction, Wiley, 2, Chichester. 

Melesse AM, Jordan JD (2002) A comparison of fuzzy vs. 
augmented-ISODATA classification algorithms for cloud-
shadow discrimination from Landsat images. 
Photogrammetric Engineering & Remote Sensing 68: 905-911. 
DOI: 35400010918127.0030 

Michalek JL, Wagner TW, Luczkovich JJ, et al. (1993) 
Multispectral change vector analysis for monitoring coastal 
marine environments. Photogrammetric Engineering and 
Remote Sensing 59: 381-384. 

Mishra VD, Sharma JK, Singh KK, et al. (2009a) Assessment of  

different topographic corrections in AWiFS satellite imagery 
of Himalaya terrain. Journal of Earth System Sciences 118(1): 
11-26. DOI: 10.1007/s12040-009-0002-0 

Mishra VD, Sharma JK and Khanna R (2009b) Review of 
topographic analysis techniques for the western Himalaya 
using AWiFS and MODIS satellite imagery. Annals of 
Glaciology 51(54): 1-8. DOI: 10.3189/ 172756410791386526 

Mishra NS, Ghosh S, Ghosh A (2012) Fuzzy clustering 
algorithms incorporating local information for change 
detection in remotely sensed images. Applied Soft Computing 
12: 2683-2692. DOI: 10.1016/j.asoc.2012.03.060 

Nackaerts K, Vaesen K, Muys B, et al. (2005) Comparative 
performance of a modified change vector analysis in forest 
change detection. International Journal of Remote Sensing 
26(5): 839-852. DOI: 10.1080/0143116032000160462 

Nichol J, Hang LK, Sing WM (2006) Empirical correction of low 
sun angle images in steeply sloping terrain: a slope matching 
technique. International Journal of Remote Sensing 27(3-4): 
629-635. DOI: 10.1080/02781070500293414 

Sharma JK, Mishra VD, Khanna R (2013) Impact of topography 
on accuracy of land cover spectral change vector analysis using 
AWiFS in Western Himalaya. Journal of the Indian Society of 
Remote Sensing 41(2): 223-235. DOI: 10.1007/s12524-011-
0180-5 

Silva PG, Santos JR, Shimabukuro YE, et al. (2003) Change 
vector analysis technique to monitor selective logging 
activities in Amazon. IEEE Proceedings International 
Geoscience and Remote Sensing Symposium, 2580-2582. DOI: 
10.1109/IGARSS.2003.1294515 

Singh S, Sharma JK, Mishra VD (2011) Comparison of different 
topographic correction methods using AWiFS satellite data. 
International Journal of Advanced Engineering Sciences and 
Technologies 7(1):85-91. 

Singh S, and Talwar R (2014) A comparative study on change 
vector analysis based change detection techniques. 
SADHANA-Academy Proceedings in Engineering Sciences 
39(6): 1311-1331. DOI: 10.1007/s12046-014-0286-x 

Singh S, Talwar R (2015a) Assessment of different CVA based 
change detection techniques using MODIS dataset. MAUSAM 
Journal 66(1): 77-86. 

Singh S, Talwar R (2015b) Performance analysis of different 
threshold determination techniques for change vector analysis. 
Journal of Geological Society of India 86: 52-58. DOI: 
10.1007/s12594-015-0280-x 

Singh S, Talwar R (2016) An intercomparison of different 
topography effects on discrimination performance of fuzzy 
change vector analysis algorithm. Meteorology Atmospheric 
Physics 128(6): 1-14. DOI: 10.1007/s00703-016-0494-5 

Thonfeld F, Hannes F, Braunc M, et al. (2016) Robust Change 
Vector Analysis (RCVA) for multi-sensor very high resolution 
optical satellite data. International Journal of Applied Earth 
Observation and Geoinformation 50: 131-140. DOI: 10.1016/ 
j.jag.2016.03.009 

Varshney A, Arora MK, Ghosh JK (2012) Median change vector 
analysis algorithm for land-use land-cover change detection 
from remote-sensing data. Remote Sensing Letters 3(7): 605-
614. DOI: 10.1080/01431161.2011.648281 

Zhang J, Foody GM (1998) A fuzzy classification of sub-urban 
land cover from remotely sensed imagery. International 
Journal of Remote Sensing 9(14): 2721-2738. DOI: 10.1080/ 
01431169821447 




