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grouped into two categories: (1) the preparatory 
variables which make the slope susceptible to 
failure, such as geology, slope, elevation, soil 
geotechnical properties, and long-term drainage 
patterns; and (2) the triggering variable which shift 
the slope from a marginally stable to an unstable 
state, such as rainfall, and earthquake (Wu and 
Sidle 1995). 

According to the first investigation of the 
geological disasters in China, 90% of the landslides 
are directly induced by or relate to rainfall (Li et al. 
2004). Previous studies have also shown that 
landslides are closely associated with rainfall. The 
rainfall-induced landslides are often regional, 
aggregate, abrupt and disastrous (Jia et al. 2008). 
A lot of research efforts have been made to identify 
the relationship between landslides and rainfall. 
The methods of predicting landslides can be 
divided into empirical-based model, physical-based 
model and statistical-based model. 

Empirical models are based on the rainfall 
characteristics, including intensity, amount and 
duration of rainfall, which closely relate to slope 
failures. Most commonly, the empirical thresholds 
have been derived by the rainfall intensity-duration 
curve and the cumulative storm precipitation 
(Caine 1980; Marchi et al. 2002; Aleotti 2004; 
Chen et al. 2005; Chleborad et al. 2006; Guzzetti  
et al.2007). Most of the empirical thresholds 
perform reasonably well in the region where they 
are developed, but may not be exported to other 
areas, since the proposed equations may vary from 
one location to another. Statistical models include 
statistical Bayesian model, logistic regression 
model, neural network model, and others. These 
methods reduce the subjectivity of the selection of 
the threshold, and consider the static conditions 
such as slope, elevation, vegetation, lithology, 
hydrology and other factors (Jia et al. 2008; Ding 
2006). Unfortunately, statistical models can’t 
explain the disaster mechanism, and are not 
suitable for the landslides induced by the extreme 
rainfall. Physical-based model analyzes the 
mechanical condition of slopes and evaluates the 
stability using mathematical calculations. It is a 
promising approach for susceptibility analysis of 
shallow landslides because of its capacity to 
reproduce the physical processes governing 
landslide occurrence (Fell et al. 2008). Most recent 
physical models are combined with a 

hydrogeological model to evaluate the effect of pore 
water pressure which increases as a consequence of 
rainfall and triggers shallow landslides (Park et al. 
2013). These models include SHALTAB (SHAllow 
Landslide STABility model) (Dietrich et al. 1993, 
1995; Montgomrty et al. 1994, 1998), SINMAP 
(Stability Index MAPping) (Pack et al. 1998; 
Morrisey et al. 2001), dSLAM(Wu et al. 1995; 
Dhakal et al. 2003), SHETRAN (Ewen et al. 2000), 
SEGMENT(Extensible Geo-fluid Model of the 
Environment) (Ren et al. 2010, 2011) and TRIGRS 
(Transient Rainfall Infiltration and Grid-based 
Regional Slope-Stability Model) (Montgomery et al. 
1994; Wilkinson et al. 2002; Iverson 2000; Baum 
et al. 2002).  

TRIGRS model has been widely used in the 
world. Cong (2008) tests TRIGRS model in the 
typical region of Southern China, and the result 
shows that the model could predict the occurrence 
and development process of regional rainfall-
triggered geological hazards dynamically. Chen 
(2011) uses TRIGRS model to simulate the 
landslides induced by a storm in Taiwan. Liao 
(2011) quantitatively evaluates the spatiotemporal 
predictability of a Matlab version of TRIGRS 
(MaTRIGRS) in North Carolina, and the study 
shows that MaTRIGRS demonstrates acceptable 
spatiotemporal predictive skill for landslide 
occurrences within a 120 m radius in space and a 
hurricane-event-duration in time, offering the 
potential to serve as a landslide warning system in 
areas where accurate rainfall forecasts and detailed 
field data are available. Kim’s Study (2010) shows 
that TRIGRS model captured about 64.1% of 
landslides that were extracted from the IKONOS-2 
imageries in a forested mountain region. There is a 
significant agreement between the TRIGRS 
simulated scenarios and the scar’s map in the 
southeastern Brazil (Vieira et al. 2010). Godt’s 
results (2008) show that the spatial prediction of 
shallow landslide susceptibility is improved using 
the transient analyses of TRIGRS model in the 
north of Seattle, Washington. 

Inspection of the literature reveals that 
physical-base models are preferred to forecast the 
spatial and the temporal occurrence of shallow 
landslides triggered by individual rainfall events in 
a given area (Raia et al. 2014). However, physical-
process based models require high spatiotemporal 
rainfall data as a driving factor. Rainfall data using 
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in the current landslide research is mainly from 
weather stations. The conventional observations 
can’t show the details of spatiotemporal 
characteristics, and this may cause some loss of 
precision in the simulation. Moreover, we can’t 
take advantage of the physical model to forecast 
landslides in real-time for lacking of quantitative 
precipitation. In recent years, a variety of rainfall 
data has been widely used, such as radar data and 
forecasting products from numerical weather 
model. Liao (2010) uses WRF (Weather Research 
Forecasting) coupled with SLIDE model (Slope-
Infiltration-Distributed Equilibrium). Wei (2005) 
makes use of the quantitative rainfall data from 
MM5 (Fifth-Generation Penn State/NCAR 
Mesoscale Model) mesoscale numerical model to 
predict the landslide basing on statistical-based 
model.  

With the rapid development of numerical 
weather prediction theory and model, the 
numerical model’s precipitation products are 
available for the landslide early warning system. It 
obviously improves the prediction accuracy of 
rainfall-induced landslides by using numerical 
weather forecasting model, particularly in the areas 
absence of rainfall data. The resolution of the 
traditional landslide forecasting method is usually 
hundreds of kilometers, but the physical-based 
model with the numerical weather prediction 
improves the accuracy to hundreds of meters and 
extends the period validity.  

In this paper, we prototyped a rainfall-
triggered landslide disaster early warning system 
“GRAPES-LFM”, which is coupled by a numerical 

weather forecasting model GRAPES and a 
physically based landslide prediction model 
TRIGRS. GRAPES model runs in 5 km×5 km 
horizontal resolution, and the initial fields and 
lateral boundaries of GRAPES are provided by 
Final Operational Global Analysis datasets. 
Quantitative precipitation forecast products of 
GRAPES model are downscaled to 25m×25m 
horizontal resolution by bilinear interpolation to 
drive TRIGRS model. GRAPES-LFM is applied to 
forecast the landslide in Dehua County during a 
typhoon rainfall process in 2006 in order to test 
the accuracy of the coupled model. 

1    Study Area 

Dehua County is located in the center of Fujian 
province, which has a subtropical mountain 
climate with the average annual rainfall of 1855 
mm (Figure 1). There are 0.28 million people, and 
70% of them live in the county center. The long-
term statistical data shows that the rainfall from 
May to September accounts for 70% of annual 
accumulated rainfall or more. Because of the 
complex terrain, the precipitation decreases from 
the south to north. Furthermore, torrential rains 
commonly activate landslides in summer season. 

According to incomplete statistics, there are 
407 rainfall-induced landslides from 1980 to 2007 
(Figure 2). Topographical parameters are 
generated from a 25m-resolution Digital Elevation 
Model (DEM) using ArcGIS 10.1 (Figure 2 and 
Figure 3). The elevations in Dehua County vary 

Figure 1 Location map of the study area in Fujian 
province, Southeast China 

Figure 2 Distribution of elevation in Dehua County, 
Fujian province, Southeast China 
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from 212 m to 1841 m, and slope angels range from 
0° to 69°. Most of the recorded landslides occurred 
in the areas where the elevations are less than 1100 
m with the slope angles less than 40°. 

The majority of the rock-soil mass in the study 
area is volcanic rock which accounts for 65.2%, and 
others are intrusions, metamorphic rock, 
natrocarbonatite and so on. According to the 
geological disaster investigation in Dehua County, 
the landslides account for 92.06% of the total 
geological disasters. Moreover, 98.17% of the 
landslides closely relate to the precipitation (China 
Geological Environmental Monitoring Institute 
2010). The typhoon Bilis (Figure 4) triggered lots 
of landslides in 2006. There was plenty of 
precipitation before the typhoon Bilis landing 
(Figure 5), so the soil was supported to be 
saturated in our study. 

2    Theoretical Basis of the Model 

2.1 GRAPE model 

The regional assimilation and prediction 
system of a new generation-GRAPES is developed 
by China Meteorological Administration (CMA). 
The main characteristics of the system include full 
compressible and hydrostatic/non-hydrostatic 
approximation in option, regional unified model, 
semi implicit-semi Lagrange decretization scheme, 
standardization, modularization and parallelization 
of the model software, etc. (Zhang et al. 2008). 
GRAPES model has been applied to the 
meteorological forecasting after ten years’ 
development, and performs better forecasting skills 
(Wang et al. 2010). 

2.2 TRIGRS model 

TRIGRS model is a FORTRAN program for 
computing transient pore-pressure changes, and 
attendant changes in the factor of safety, due to 
rainfall infiltration using the method outlined by 
Iverson (2000). This model has been applicable to 
the areas where rainfall is prone to induce shallow 
landslides in the world, and the model’s 
assumptions include a well-documented flow field 
and relatively isotropic. Further technical details of 
the model have been fully described in Baum et al. 

(2002). 
The factor of safety for an infinite slope can be 

calculated as: 

ܵܨ ൌ ௙ܨ ൅ ௪ܨ ൅  ௖                          (1)ܨ

௙ܨ ൌ
୲ୟ୬∅

୲ୟ୬ఈ
                                        (2) 

௪ܨ ൌ
ିఝሺ௓,௧ሻఊೢ ୲ୟ୬∅

ఊೞ௓ ୱ୧୬α ୡ୭ୱఈ
                         (3) 

௖ܨ ൌ
௖

ఊೞ௓ ୱ୧୬ఈ ୡ୭ୱఈ
                            (4) 

where	ܿ is soil cohesion, ߙ is slope angle, ∅ is soil 
friction angle, ߮ is ground-water pressure head as a 

Figure 3 Distribution of slope angle in Dehua County, 
Fujian province, Southeast China. 

Figure 4 The track of the typhoon Bilis. 

 
Figure 5 Daily precipitation before the typhoon Bilis 
landing. 
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function of the soil depth ܼ  and time ߛ ,ݐ௪  is the 
unit weights of water, ߛ௦ is the soil unit weights. In 
addition, it is assumed that groundwater flow is 
parallel to the slip surface, and a slice of infinite 
slope mass has unit width. We support that the 
slope is stable when ܵܨ >=1, and the slope is 
unstable when 1> ܵܨ. 

Baum et al. (2002) generalizes Iverson’s 
original infiltration model solution by developing 
the TRIGRS program for cases of variable rainfall 
intensity and duration. The generalized solution 
used in TRIGRS is given by: 
߮൫ܼ，ݐ൯ ൌ ሾܼ െ ݀ሿߚ 

൅2∑
ூ೙ೋ
௄ೄ
ݐሺܪ െே

௡ୀଵ

ݐଵሺܦ௡ሻሾݐ െ ௡ሻሿݐ
భ
మ ∑ ቊierfc ቈ

ሺଶ௠ିଵሻௗಽೋିሺௗಽೋି௓ሻ

ଶሾ஽భሺ௧ି௧೙ሻሿ
భ
మ

቉ ൅∞
௠ୀଵ

ierfc ቈ
ሺଶ௠ିଵሻௗಽೋାሺௗಽೋି௓ሻ

ଶሾ஽భሺ௧ି௧೙ሻሿ
భ
మ

቉ቋ െ 2∑
ூ೙ೋ
௄ೄ
ݐሺܪ െே

௡ୀଵ

ݐଵሺܦ௡ାଵሻሾݐ െ ௡ାଵሻሿݐ
భ
మ ∑ ቊierfc ቈ

ሺଶ௠ିଵሻௗಽೋିሺௗಽೋି௓ሻ

ଶሾ஽భሺ௧ି௧೙శభሻሿ
భ
మ

቉ ൅∞
௠ୀଵ

ierfc ቈ
ሺଶ௠ିଵሻௗಽೋାሺௗಽೋି௓ሻ

ଶሾ஽భሺ௧ି௧೙శభሻሿ
భ
మ

቉ቋ                                              (5) 

ierfcሺߟሻ ൌ
ଵ

√π
expሺെߟଶሻ െ  ሻ              (6)ߟerfcሺߟ

where ܼ ൌ /ݖ cos ߙ , Z is the soil depth of the 
vertical coordinate direction, z is the soil depth of 
the slope-normal coordinate direction; ݀  is the 
steady-state depth of the water table measured in 
the vertical direction; ߚ ൌ ߙcosߣ , in which ߣ ൌ
cosߙ െ ሺܫ௓௅்/ܭௌሻ, ܭௌ  is the saturated hydrological 
conductivity, LT means long term, ܫ௓௅் is the steady 
surface flux;ܫ௡௓is the surface flux for the nth time 
interval; ݀௅௓ is the depth of the impermeable basal 
boundary;	ܪሺݐ െ  ;௡ሻ is the heavy-side step functionݐ
D1=D0cos2ߙ , where D0 is the saturated hydraulic 
diffusivity; N is the total number of intervals; 
ierfcሺߟሻ is the complementary error function. 

TRIGRS model uses a simple method for 
routine of surface runoff from cells that have excess 
surface water to adjacent downslope cells where it 
can either infiltrate or flow farther downslope. The 
infiltration (I) at each cell as the sum of the 
precipitation (P), plus any runoff from upslope 
cells ( ܴ௨ ), with the limitation that infiltration 
cannot exceed the saturated hydraulic conductivity 
 .(௦ܭ)

ܫ ൌ ܲ ൅ ܴ௨；ܫ ൑  ௦                          (7)ܭ

At each cell where 	ሺܲ ൅ ܴ௨ሻ  exceeds ܭ௦ , the 
excess is considered runoff (ܴௗ) and is diverted to 

adjacent downslope cells. 

ܴௗ ൌ ܲ ൅ ܴ௨ െ ；ܴௗ	௦ܭ ൒ 0                  (8) 

3    Application of GRAPES-LFM model 

GRAPES-LFM model is applied to forecast the 
landslides in Dehua County during a typhoon 
rainfall process in 2006. GRAPES model runs in 5 
km ×5 km horizontal resolution, and the initial 
fields and lateral boundaries of GRAPES are 
provided by Final Operational Global Analysis 
datasets. Quantitative precipitation of GRAPES 
model is downscaled to 25 m×25 m horizontal 
resolution by bilinear interpolation to drive 
TRIGRS model. The time output interval of 
GRAPES-LFM model is 1 h, and the forecasting 
time is 48 h from 00:00 on July 15th to 00:00 on 
July 17th in 2006. GRAPES-LFM model is tested by 
the recorded rainfall-induced landslides. 

3.1 Rainfall 

The characteristics of the rainfall play 
important roles in triggering landslides. In Fujian 
province, there are twenty first weather stations, 
and five of them are in Dehua County. The 
observed daily rainfall data is generated by IDW 
(Inverse Distance Weighted Interpolation) method 
using the data from the weather stations, and the 
predicted daily rainfall data is provided by 
GRAPES-LFM model. Influenced by the typhoon 
Bilis, the rainfall concentrated in the southern part 
of Dehua County. By comparison, the spatial 
distribution of the predicted rainfall is similar to 
the observed rainfall, but the total amount of the 
predicted precipitation needs to be improved 
(Figure 6). The spatiotemporal rainfall intensity is 
unevenly distributed. Figure 7 shows that the 
maximum hourly rainfall intensity on July 15th 

reached 8.1 mm/h, and the rainfall intensity 
declined sharply on July 16th (Figure 7). 

3.2 Parameterization  

The TRIGRS model requires knowledge of 
several input parameters, some of which can be 
derived from 25m-resolution digital elevation 
model, while others have to be obtained from 
geotechnical field work and laboratory tests. Soil 
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samples were collected from six sites in Dehua 
County. As the results, the slope angels range from 
0° to 69°, and Figure 3 depicts the spatial 
distribution of them in detail; the soil cohesion 
ranges from 12.9~40.2 kPa with mean of 24.77 kPa; 
the value of soil friction angels vary from 
16.9°~25.4° with mean of 21.42°; the soil unit 
weight ranges from 11.17~14.80 kN/m3; the 
saturated hydrological conductivity ranges from 
4.79×10-7~1.38×10-6 m/s. The mechanical and 
hydrological properties of the geological materials 
in the study area are summarized in Table 1. 

The soil was assumed to be saturated, for there 
was plenty of rain before the typhoon landed. In 
this application, it is supposed that the 
hydrological diffusivity is 100 times more than the 
vertical hydraulic conductivity of saturated soil, 

and background infiltration rate is 1% of the 
hydraulic conductivity (Chen et al. 2011; Feng et al. 
2009). The average values of soil properties are 
used in the model (Table 2). The map in Figure 8 
shows the spatial distribution of the soil depth in 
Dehua County. According to the geological survey 
of the staff working in Fujian Monitoring Center of 
Geological Environment, we suppose the water 
table is 80% of the soil depth. 

3.3 Results 

The GRAPES-LFM model is applied to predict 
landslides triggered by the typhoon Bilis in Dehua 
County. The predicted accumulated rainfall from 
July 15th to July 16th in 2006 is between 4 to 156 
mm with significant difference in spatial 

 

 
Figure 6 Observed (a) and predicted (b) daily rainfall on July 15th, 2006, and observed (c) and predicted (d) daily 
rainfall on July 16th, 2006.  
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distribution (Figure 9), and the rainfall mainly 
concentrated in the south of the study area. To test 
the model’s performance, the geographical 
distribution of the factor of safety (FS) predicted by 
the GRAPES-LFM model are compared to the 
known distribution of rainfall-induced landslides 
mapped in the same area. The landslides are 
mapped through the fieldwork of the staff working 

in Fujian Monitoring Center of Geological 
Environment. There are 12 observed landslides 
which concentrated in Gaide Town and County 
center with the frequent human activities, and 
there are five observed landslide-prone areas 
(Figure 10). For the comparison, all grid cells with 
FS<1 are considered unstable and dangerous. 

The predicted landslides in Figure 10 are 
difficult to identify. Moreover, the spatial 
resolution of the input parameters can’t reach the 
accuracy of 25 m. For example, the spatial 
resolution of the soil depth is about 250 m. For the 

 

 
Figure 7 Predicted rainfall intensity at 05:00 (a) and at 23:00 (b) on July 15th, 2006 and predicted rainfall intensity 
at 04:00 (c) and at 14:00 (d) on July 16th, 2006. 

Table 1 Mechanical and hydrological properties of 
soils in the study area 

Location C	ܿ 
(kPa) 

FA 
∅(°) 

UW ߛ௦ 
(kN/m3) 

SHC 
 ௌ(m/s)ܭ

Mapping  38.5 16.9 14.80 5.68×10-7 
Shishan 40.2 22.0 14.80 1.19×10-6 
Xiabi  20.2 18.1 11.27 7.74×10-7 
Hengtouge  12.9 21.5 12.35 1.38×10-6 
Qiaotingtou  19.2 24.6 11.96 5.22×10-7 
Pengkengcun  17.6 25.4 11.17 4.79×10-7 
Average 24.77 21.42 12.73 8.19×10-7 

Notes: C = Soil cohesion; FA = Soil friction angle; UW = 
Soil unit weights; SHC = Saturated hydrological 
conductivity. 

Table 2 Input parameters used in the application 

Soil cohesion ܿ(kPa） 24.77 
Soil friction angle ∅(°) 21.42 
Soil unit weights ߛ௦(kN/m3） 12.73 
Saturated hydrological conductivity ܭௌ 
(m/s) 

8.19×10-7 

Background infiltration rate ܫ௓௅் (m/s) 8.19×10-9 
Hydrological diffusivity ܦ଴ (m2/s) 8.19×10*-5 
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reasons above, the risk levels of the areas are 
reclassified. Each assessment unit includes 400 

girds (20 rows × 20 columns) with the spatial 
resolution of 500 m. If there are no grids in danger 
in the unit, the risk level is “safe areas”; if the grids 
in danger in each unit are less than 10%, the risk 
level is “dangerous areas”; if the grids in danger are 
more than 10% and less than 50%, the risk level is 
“more dangerous areas”; if the grids are more than 
50%, the risk level is “most dangerous areas”. 
Landslide risk reclassification map is shown in 
Figure 11. The observed landslide-prone areas are 
almost marked to be in danger in the predicted 
Landslide risk classification map. Ten in twelve 
landslides which have been recorded in Gaide 
Town and County center are predicted successfully. 
In fact, it is difficult to predict the accuracy location 
in the human settlement. The 12 recorded 
landslides are located in the areas affected by 
anthropogenic impacts, and ten in twelve 
landslides are predicted. In order to value the 
model’s performance, an experiment is added as 
supplement. Under the rainfall of 30 mm/h, a 
comparison of simulating instability with the 
historical landslides is conducted to assess the 
model capability. The results show that there are 
74% agreement between the predicted and the 
historical landslides for the entire study area 
(Figure 12). 

3.4 Model sensitivity to rainfall pattern 

For the physical-based model, sufficient and 
accurate information has to be obtained to 
construct an accurate landslide risk map. But the 
data is often imperfections. For example, the 

Figure 8 Distribution of the soil depth in Dehua 
County. 

Figure 9 Predicted accumulated rainfall from July 15th 
to July 16th. 

Figure 10 Distribution of the factor of safety in Dehua 
County. 

Figure 11 Landslide risk classification map. 
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spatial resolution of the predicted rainfall is several 
kilometers. Previous research works mainly focus 
on the uncertainty of the strength and hydrology 
parameters, so we don’t know how different rainfall 
patterns affect the FS in the TRIGRS model. In the 
following sensitivity analysis, the effect of 
variability in the rainfall patterns is examined. The 
other parameters used the typical values are shown 
in Table 3. For the typical parameters and the 
hydraulic conductivity of 8.19×10-5 m/s, the time to 
failure under the constant rainfall intensity is about 
38 h. If the rainfall intensity changed, the time to 
failure changes too. Along with the increase of the 
hydraulic conductivity, the time to failure shortens 
dramatically. The results show the time of the slope 
to failure is different with the same total amount of 
the rainfall, when the hourly rain intensity is 
different, so the rainfall patterns have significant 
effects on the time to failure (Figure 13).The 
experiment confirms the importance of the 
accuracy of the rainfall data in predicting shallow 
landslides. 

4    Conclusions and Discussion 

Drawing on recent advances in numerical 
weather prediction model, this paper proposes a 

 

 
Figure 13 Relationship between factor of safety (FS) and rainfall intensity (ܭௌ=8.19×10-5 m/s). 
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Figure 12 Landslide risk classification map under the 
rainfall of 30 mm/h. 
 
Table 3 Input parameters for model sensitivity 
analysis 

SD 
z(m) 

WT 
݀(m) 

SC 
	ܿ (kPa) SFA ∅(°) SUW ߛ௦ 

(kN/m3) 
6 3 24.77 21.42 12.73 

SAߙ(°) 
BIR ܫ௓௅் 
(m/s) 

HD ܦ଴ 
(m2/s) 

RA(mm)  

  ௌ 300ܭ*ௌ 100ܭ*0.01 30

Notes: SD = Soil depth; WT = Water table; SC = Soil 
cohesion; SFN = Soil friction angle; SUW = Soil unit 
weights; SA = Slope angle; BIR = Background 
infiltration rate; HD = Hydrological diffusivity; RA = 
Rainfall amount. 
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conceptual framework for a real-time landslide 
prediction model GRAPES-LFM, which considers 
both the induced effect of the rainfall and the 
mechanism of the landslide. The model objectives 
aim to predict regional landslides by mapping FS 
over a defined region using a set 25-m DEMs to set 
up a physical framework. The effectiveness of this 
model is applied to several rainfall-triggered 
landslides induced by the typhoon Bilis in 2006 
and the historical landslides under a rainfall 
scenario. GRAPES-LFM model extends the 
warning lead time of landslide forecasts. Results 
show that the GRAPES-LFM model successfully 
helps to identify the landslide hotspot areas.  

There are several limitations of simplifying the 
physically based relationships. These shortcomings 
can limit model accuracy and should be improved 
for future applications: (1) Isotropic, homogeneous 
materials are assumed, which limit the forecast 
ability; (2) The higher spatiotemporal resolution of 
the input data is better as the model’s input 
parameters. If we get more precise slope angels, 
soil characteristics and rainfall data, maybe the 
over-prediction of failure could be reduced; (3)The 
model only simulates the natural landslide process, 
but the areas affected by anthropogenic impacts is 
hardly presented.  

Despite the limitations currently, the 

simulation results still suggest that GRAPES-LFM 
model demonstrates skill in predicting rainfall-
triggered landslides considering the dynamic 
inducing factors. This type of real-time prediction 
system for disasters can provide policy planners 
with overview information to assess the spatial 
distribution of potential landslides. Gathering 
more observed landslide data and detailed input 
parameters, we will still work to test and enhance 
the GRAPES-LFM model. 
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